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Runaway mitigation in ITER 1/12
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Recent modelling suggests unsuccesful RE

mitigation in ITER (15 MA nuclear phase), if:
B The entire hot-tail seed is lost during the TQ,
B All RE’s created during the CQ are confined.
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Green boundary encloses tolerable CQ times
[O Vallhagen et al. (2020), submitted to JPP]
[See presentation by T Fuldp for further details]



Gap in present modelling capabilities 2/12

B Survival of hot-tail seed can further exacerbate the problem...  (Part 1)
B ...but transport of relativistic electrons may help us. (Part 2)
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...but transport of relativistic electrons may help us. (Part 2)

Model kinetic equation:
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B Resolving full phase-space dynamics sometimes infeasible:
= develop reduced models to capture these effects.
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Hot-tail generation 3/12

Expansion in strong pitch angle scattering: f = fy + 6f; + ...
[Rosenbluth & Putvinski, NF (1997), Hesslow et al. NF (2019)]
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— Previously used in RE avalanche theory

— Current carried by f; term:
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allows self-consistent evolution of fields V2E = od(cE + jre)/Ot



Validity of reduced hot-tail model: test case 4/12
Performance of theory compared with:
B CODE (2D kinetic solver: https://ft.nephy.chalmers.se/retools/)
B analytic theory [Smith & Verwichte, PoP (2008)] amended with jre
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No transport (D = 0)



https://ft.nephy.chalmers.se/retools/

Hot-tail test case (continued) 5/12
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Hot-tail modelling: Outlook 6/12

Reduced hot-tail model roadmap:
B Assess validity in more realistic TQ simulations

» Self-consistent temperature evolution
» Screening effects in collision frequencies

B Explore effects of stochastic radial losses during TQ
» Can we meet 90% radiated fraction and simultaneously deconfine the hot-tail seed?
» How does faster-than-resistive current flattening influence seed formation?

B Attempt a modified reduced theory to extend validity to low Zg

Further details on the hot-tail models is published at:

| Svenningsson, MSc thesis (2020)
https://hdl.handle.net/20.500.12380/300899


https://hdl.handle.net/20.500.12380/300899

Radial transport during the current quench
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Fast electrons lost along open field lines
Most realistic model: orbit following

Alternative approach: advection-diffusion model
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Challenge: Find self-consistent f for net transport
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Question: Level of perturbation required to
suppress the runaway avalanche?
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Perturbed ITER-like field with corresponding
radial diffusion coefficient
More details: K Sarkimaki pres. + publication
https://arxiv.org/abs/2006.03726


https://arxiv.org/abs/2006.03726

Radial transport during the current quench: Our approach 8/12

Revisit and generalise previous study [P Helander et al. PoP 7 (2000)]:

I, > 1MA =- RE avalanche faster than CQ
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Average over pitch angles:
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U(0)F(0) = lavanre = lava / F(p)dp (Boundary condition)

Solution: ngldnre /0t =T =T(r; A, D, Tava)



Radial transport: Example 9/12

== Small-D approximation

Test case: — Full solution

B Radially uniform diffusion: 04|
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Radial transport: Runaway threshold field 10/ 12

Test case:
B Threshold electric field £

ONRe
NE" =5 =0

B Current decay rate in runaway
plateau [B N Breizman NF (2014)]
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B Root-finding algorithm implemented
to solve I' = 0 for given D(p)
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np=1x102m=3, nar = 0.3 x 10¥¥m~3,
B=53T.



Radial transport modelling: Outlook
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Roadmap for reduced model of RE transport:
B Determine domain of validity by comparing with kinetic simulations
B Study A, D(r, p,&) from particle following in realistic fields
B Assess dB/B needed to obtain tolerable avalanche multiplication

Further details on the growth rate model with radial transport is published at:

P Svensson, MSc thesis (2020)
https://hdl.handle.net/20.500.12380/300784
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Summary 12/12

B Kinetic runaway physics expensive to resolve within integrated models
B Ongoing effort to improve reduced kinetic modelling of

» Hot-tail seed formation during thermal quench
» Suppression of avalanche by radial transport during current quench

B Upcoming research: explore consequences in realistic disruption simulations



