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Runaway mitigation in ITER 1/ 12

Recent modelling suggests unsuccesful RE
mitigation in ITER (15 MA nuclear phase), if:

� The entire hot-tail seed is lost during the TQ,

� All RE’s created during the CQ are confined.

Green boundary encloses tolerable CQ times
[O Vallhagen et al. (2020), submitted to JPP]

[See presentation by T Fülöp for further details]



Gap in present modelling capabilities 2/ 12

� Survival of hot-tail seed can further exacerbate the problem... (Part 1)

� ...but transport of relativistic electrons may help us. (Part 2)

� Model kinetic equation:
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� Resolving full phase-space dynamics sometimes infeasible:
⇒ develop reduced models to capture these effects.
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Hot-tail generation 3/ 12

Expansion in strong pitch angle scattering: f = f0 + δf1 + ...
[Rosenbluth & Putvinski, NF (1997), Hesslow et al. NF (2019)]
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– Previously used in RE avalanche theory

– Current carried by f1 term:
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allows self-consistent evolution of fields ∇2E = µ0∂(σE + jRE)/∂t



Validity of reduced hot-tail model: test case 4/ 12

Performance of reduced theory compared with:

� CODE (2D kinetic solver: https://ft.nephy.chalmers.se/retools/)

� analytic theory [Smith & Verwichte, PoP (2008)] amended with jRE

Test case with high Z :

n0 = 1020 m−3,

Tinitial = 6 keV,

Tfinal = 5 eV,

τTQ = 0,

Zeff = 20,

σE + jRE = j0,

j0 = 1 MA/m2,

No transport (D = 0)
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Hot-tail test case (continued) 5/ 12

Density scan: suppression of hot-tail
formation by raising collisionality

nRE = lim
t→∞

nRE(t)

Best performing model Zeff-dependent:

– Low Zeff: analytic model better

– High Zeff: reduced kinetic better
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Hot-tail modelling: Outlook 6/ 12

Reduced hot-tail model roadmap:
� Assess validity in more realistic TQ simulations

I Self-consistent temperature evolution
I Screening effects in collision frequencies

� Explore effects of stochastic radial losses during TQ
I Can we meet 90% radiated fraction and simultaneously deconfine the hot-tail seed?
I How does faster-than-resistive current flattening influence seed formation?

� Attempt a modified reduced theory to extend validity to low Zeff

Further details on the hot-tail models is published at:

I Svenningsson, MSc thesis (2020)

https://hdl.handle.net/20.500.12380/300899

https://hdl.handle.net/20.500.12380/300899


Radial transport during the current quench 7/ 12

� Fast electrons lost along open field lines

� Most realistic model: orbit following

� Alternative approach: advection-diffusion model
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� Challenge: Find self-consistent f for net transport

� Question: Level of perturbation required to
suppress the runaway avalanche?

Perturbed ITER-like field with corresponding
radial diffusion coefficient

More details: K Särkimäki pres. + publication
https://arxiv.org/abs/2006.03726

https://arxiv.org/abs/2006.03726


Radial transport during the current quench: Our approach 8/ 12

Revisit and generalise previous study [P Helander et al. PoP 7 (2000)]:

Ip � 1 MA⇒ RE avalanche faster than CQ
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Radial transport: Example 9/ 12

Test case:

� Radially uniform diffusion:

D =
D0√
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ec2

,

A = 0

� Γ given by integral equation:
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Radial transport: Runaway threshold field 10/ 12

Test case:

� Threshold electric field Eeff
c :

Γ(Eeff
c ) =

∂nRE

∂t
= 0

� Current decay rate in runaway
plateau [B N Breizman NF (2014)]
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� Root-finding algorithm implemented
to solve Γ = 0 for given D(p)
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Radial transport modelling: Outlook 11/ 12

Roadmap for reduced model of RE transport:

� Determine domain of validity by comparing with kinetic simulations

� Study A, D(r , p, ξ) from particle following in realistic fields

� Assess δB/B needed to obtain tolerable avalanche multiplication

Further details on the growth rate model with radial transport is published at:

P Svensson, MSc thesis (2020)

https://hdl.handle.net/20.500.12380/300784

https://hdl.handle.net/20.500.12380/300784
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� Kinetic runaway physics expensive to resolve within integrated models
� Ongoing effort to improve reduced kinetic modelling of

I Hot-tail seed formation during thermal quench
I Suppression of avalanche by radial transport during current quench

� Upcoming research: explore consequences in realistic disruption simulations


