(Virtual) Technical Meeting on Plasma Disruptions and their Mitigation

Contribution ID: 141 Type: Contributed

Continuous update of machine learning disruption
prediction and prevention models at JET

The complex interplay of physics phenomena, which can cause plasma disruptions, hinders the development
of predicting models. Recently, satisfactory Machine Learning predictors have been deployed on different
devices. These models extract information from the high-dimensional data spaces of fusion experiments and
help to detect and classify disruptions. Nevertheless, Machine Learning predictors have two main limitations:
their performances deteriorate if the operating scenario evolves and they are difficult to interpret so that it is
problematic to use them to study the physics of disruptions. This second reason motivated the development
of interpretable Machine Learning algorithms, whose outputs can be interpreted in terms of the underly-
ing physics. The GTM model [1], which is implemented on the PETRA system at JET, is an unsupervised
mapping method, whose clusters can be colored using the knowledge over a set of suitably chosen plasma
parameters. During the model training, this knowledge was given by manually identifying the beginning of
the pre-disruptive phase of a selected set of disrupted discharges, which describes the disrupted operational
space. Moreover, the disruption free operational space was described considering the flat-top phase of the
plasma current for a selected set of regularly terminated discharges. The obtained GTM achieved very good
performances and it was possible to study the evolution of its outputs by looking at the projection of the
discharge over the map.

As every Machine Learning Algorithm, the GTM performance degrades as the operational space of the ma-
chine changes. This change can be highlighted by the statistical analysis reported in Table 1, which compares
some plasma parameters of the regularly terminated discharges in the experimental campaigns performed at
JET from 2011 to 2013 (C28-C30), those in 2016 (C36), and those in the more recent 2018-2019 campaigns (M18-
01/M18-04). As we are working in a continuously changing environment, also the disruption predictor should
be upgraded. However, the manual identification of the pre-disrupted phase is a time-consuming task, which
does not allow to increasingly update a model in a context of continuous operational change. To automate the
process of the data labelling necessary for the model update, we developed an algorithm to identify, for each
disrupted discharge, the starting time, Tpre-disr, of the pre-disruptive phase [2]. The automatic Tpre-disr is
estimated with a statistical approach, based on similarity measures between distributions, to quantify how
much a disruptive pulse is becoming dissimilar from a typical regularly terminated discharge during its time
evolution. This approach allowed to successfully train a GTM with the C36 discharges, where the manual
identification of the Tpre-disr was not available. Preliminary results, on M18-01/M18-04 pulses, show that
an updated GTM model trained with C28-C30 and C36 discharges is able to recover 2 of the 3 false alarms
triggered by the model trained with the C28-C30 discharges.

Reference

[1]A. Pau, et al., Nucl.Fusion 59 (2019) 106017,(22pp).

[2]E. Aymerich, et al., “A statistical approach for the automatic identification of the start of the chain of events
leading to the disruptions at JET”, EUROfusion pinboard, proposed for Nuclear Fusion.

Table 1: Ranges of plasma parameters over the three considered sets of regularly terminated discharges

C28-C30 C36 M18-04/M18-01

Plasma Parameter Min Max Min Max Min Max

Plasma Current [MA)] 1.448 2.983 1.633 3.273 2.261 3.545
Poloidal beta [a.u.] 0.096 0971 0.125 0.760 0.126 0.669
Total Input Power [MW] 0.715 21676 | 0.196 30.453 1.277 36.010
Total Radiated Power [MW] 0.100 7.715 0.100 12.657 0.532 22,608
Safety factor q95 [a.u.] 2.328 4917 2571 5.476 2,936 3.810
Line Integrated Density [10'° m] 2763  22.099 | 2.876 23.632 3,296 23.570
Temperature peaking factor [a.u.] * 1.157 3.051 1.109 2.613 1.442 2.395
Density peaking facter [a.u,] * 0.762 1.625 0.706 1.714 1.097 1.753
Radiation peaking factor: Core-Versus-All [a.u] * 0.441 2.278 0.365 1.580 0.627 1.704
Radiation peaking factor: Divertor [a.u.] * 0.760 1.896 0.803 1.857 0.609 1.730
Internal Inductance [a.u.] 0.836 1.224 0.822 1.1%0 0.780 1.105

*Defined as in [1]
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