IAEA Technical Meeting on Plasma Disruptions and their Mitigation

Identifying Disruption Precursors by Anomaly Detection on Bolometer Tomography

D. R. Ferreira¹ P. J. Carvalho^{1,3} C. Sozzi² P. J. Lomas³ and JET Contributors

¹ IPFN / IST, Portugal ² ISTP - CNR, Italy ³ CCFE / UKAEA, UK

Introduction

- JET baseline scenario¹
 - plasma current \uparrow input power \uparrow disruptivity \uparrow
 - impurity accumulation, core radiation, radiative collapse^{2,3}
 - bolometer tomography⁴

¹ L. Garzotti et al, "Scenario development for D-T operation at JET", Nucl. Fusion, vol. 59, no. 7, 2019

² P. C. de Vries et al, "Survey of disruption causes at JET", Nucl. Fusion, vol. 51, no. 5, 2011

³ E. Joffrin et al, "First scenario development with the JET new ITER-like wall", Nucl. Fusion, vol. 54, no. 1, 2013

⁴ A. Huber et al, "Upgraded bolometer system on JET for improved radiation measurements", Fusion Eng. Des., vol. 82, no. 5, 2007

Motivation

- Identify disruption precursors
 - some unusual behaviours can be observed directly in the bolometer signals
 - focus on 2D plasma profile, characterize anomalies in terms of shape and location of radiation blobs

Approach

- Identify disruption precursors
 - assume non-disruptive pulses contain normal behaviour, train model to reproduce this behaviour
 - apply on disruptive pulses to detect unusual behaviour, potential anomalies before disruption
 - higher reconstruction error than the normal behaviour the model was trained on
 - · large number of profiles that need to be computed from bolometer data

Approach

- Two components
 - a fast tomographic method
 - to generate radiation profiles from bolometer data (e.g. neural net, or even simpler)
 - an anomaly detector
 - to point out unusual profiles (e.g. variational autoencoder)

Tomographic reconstruction model

- Neural network¹ or simpler model
 - simpler model can be incorporated as pre-trained layer in anomaly detector
 - mean absolute error ~0.010 MW/m³ for neural net, ~0.015 for simple model
 - trained on ~10k selected reconstructions; can be trained on single GPU

Anomaly detection model

- Variational autoencoder
 - prior distribution is typically standard multivariate normal with $\mu = 0$ and $\Sigma = I$
 - loss function = mean absolute error + Kullback–Leibler divergence
 - trained on ~1.4 million profiles from ~250 non-disruptive baseline pulses; requires multiple GPUs

• Anomaly score on pulse 92213

IAEA Technical Meeting on Plasma Disruptions and their Mitigation

• Anomaly score on pulse 92213

• Anomaly score on pulse 92213

D. R. Ferreira et al.

IAEA Technical Meeting on Plasma Disruptions and their Mitigation

11

• Anomaly score on pulse 92213

IAEA Technical Meeting on Plasma Disruptions and their Mitigation

• Anomaly score on pulse 92213

IAEA Technical Meeting on Plasma Disruptions and their Mitigation

• Anomaly score on pulse 92213

IAEA Technical Meeting on Plasma Disruptions and their Mitigation

• Anomaly score on pulse 96486

• Anomaly score on pulse 96486

IAEA Technical Meeting on Plasma Disruptions and their Mitigation

• Anomaly score on pulse 96486

IAEA Technical Meeting on Plasma Disruptions and their Mitigation

• Anomaly score on pulse 96486

Conclusion

- Multiple physics phenomena at play in baseline pulses
 - e.g. 92213: core radiation build-up + instabilities driven by MARFEs¹
 - e.g. 96486: core radiation + core dynamics + MARFEs + divertor event
 - other anomalies related to outboard radiation, UFOs², sawteeth³, etc.
- Different time frames of disruption precursors
 - core radiation appears long before disruption, relevant for disruption avoidance
 - MARFE-like behaviour appears much closer to disruption, disruption mitigation only
 - other markers such as ELMs⁴, UFOs, divertor events are signalled by the anomaly score
- Possible criticisms and future work
 - nothing new in here, everything was already in the data
 - extend to other pulses beyond baseline, e.g. hybrid scenario
 - idea of applying to every pulse hits upon computational limits

Acknowledgments: CCFE/UKAEA Advanced Computing; EUROfusion HPC MARCONI-FUSION at CINECA, Italy

¹ B. Lipschultz et al, "Marfe: an edge plasma phenomenon", Nucl. Fusion, vol. 24, no. 8, 1984

² A. Murari et al, "Algorithms for the Automatic Identification of MARFEs and UFOs in JET Database of Visible Camera Videos", IEEE Trans. Plasma Sci., vol. 38, no. 12, 2010

³ S. von Goeler et al, "Studies of Internal Disruptions and *m*=1 Oscillations in Tokamak Discharges with Soft–X-Ray Techniques", Phys. Rev. Lett., vol. 33, no. 20, 1974

⁴ H. Zohm, "Edge localized modes (ELMs)", Plasma Phys. Control. Fusion, vol. 38, no. 2, 1996