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Where do disruptions occur? (not where you think)

• Reactor relevant scenarios for 
steady-state power production 
are operated at q95>=5

Ip (MA)

bN

NO disruptions at q95>=5
- At any b
- With any instability
- With any radiated fraction

• Physics caused disruptions only occur at 
q95<~3.8

- Inductive scenario for high gain, pulsed, 
operation

- Low bN, very low JNI, low input power

163 random AT discharges

Time (s)

(spanning 7 years)
Not a single disruption
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I will focus on the low q95 ITER Baseline Scenario, where 
disruptions occurr

Mission:
- 500 MW for 400 s, Q = 10 (G=0.42)
- Full Bt, Ip=15 MA, IN=1.415 à q95=3
- Expected T<0.7 Nm, low rotation

DIII-D demonstration discharges:
- ITER shape+𝛜, q95=2.9-3.3
- H98=1, bN=1.7-2.25 à G=0.38-0.43
- T=-0.5-5 Nm

ITER Baseline Scenario demonstrated in DIII-D matching most parameters
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EC
RH

q=2

Jtot
Johm

Jboot
Jnbi

q=2

-m=2/n=1 rotating TMs can 
limit flattop duration

-Core stability determined by 
pedestal region 

-Direct ECCD stabilization requires 
far off-axis deposition

- Issue for fusion power and gain

STABILITY

CONFINEMENT

IBS: Tension Between Stability and Confinement

- ITER Q=10 mission: Pfus=500 MW, high gain à high I/B, low input power
- q95=3 + sawteeth à q=2 near the edge
- >2017: Passively stable zero torque IBS plasmas with NBI+ECH power
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"Unstable" Shots Are Terminated By an m=2/n=1 Tearing Mode

Jtotal

Johmic

Jnbi Jbootstrap

q=2

• The plasma current is mostly inductive à J profile tailoring 
by NI sources is ineffective (CD is not a viable actuator)

• Jboot dominates the pedestal, q=2 at r~0.8 à Strong 
correlation with pedestal/edge due to fixed Ip

• Many shots are terminated by a 2/1 tearing 
mode

• At high and low torque
• It locks and disrupts within 50-150 ms
• ECCD stabilization isn't effective

(low Te, jCD; fast growth, lock) 
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These are very likely classically unstable TMs,
not NTMs:

- Onset after 10s sawteeth, ELMs, 100s ttear at fixed pressure à on tR scale
- Jboot is very small everywhere, and minimum at q=2 (inductive!)

- Jeccd/Jboot>1-2 does not stabilize (D’ is the drive, not Jboot)

The IBS Instabilities Are Not Due to a bN Limit

• The modes appear after >10 tE at constant 
pressure

• Well below the no-wall MHD limit
• Lower bN does not lead to better stability

# 
of

 s
ho

ts
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Database of ~240 IBS Plasmas Analysed for Global and 
Local Quantities

- Local current density measured by raw 
MSE data

- “Enhanced” efits for q and J, with 
MSE+magnetics and a pedestal

à Magnetics + edge constraints describe 
the pedestal (similar to kinetic efit)

à MSE constrains the core up to r~0.8

J “well”

q = 2

Equilibrium reconstruction

Raw MSE data

Sawteeth

𝜇!𝐽~
𝜕𝐵"
𝜕𝑅 ~tan(γ)

J pedestal

• Unstable = at time of 2/1 mode onset
• Stable = stable time slices on the bN flattop
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Changes in the Current Profile Are Correlated with 
Tearing Instability
• Unstable points fall predominantly in the lower right region (larger gradients)

More 
negative
inside

More 
positive
outside

ÑJ/J outside well

Ñ
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Current density profile (A/cm2)
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Stable

Unstable

Unstable points have steeper 
"current well" around the q=2 surface
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• Long term dependence on J suggests stable 
and unstable times have different D' : 
classical drive

• D' is a GLOBAL parameter, determined by all 
the current profile

• D'>0 is necessary, not sufficient for instability: 

à D' trends determine if more/less stable

à For instability, D'> D'crit (inner layer physics)

Changes in the Current Profile Affect the Classical 
Tearing Index D'
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67% of the Instabilities Occur Before 1.3 s on the bN Flattop 
(1-1.5 tR in DIII-D)
• More stable current profile late, fewer unstable shots after ~1 s 

à if we solve the access problem, high probability of remaining stable

ÑJ separation is 
independent from 

torque, sawteeth, ELMs, 
higher m/n modes 
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Fixed zero torque

Changes !i, current 
penetration Ip (MA)

D2 (Tl/s)

PNBI (kW)

bN

Ip ramp rate

Gas bleed

Heating delay

LH transition

Peak !i

Changes ELM frequency, 
pedestal (not density)

No time to scan the 
L-mode density/gas

!i

Database study indicates that the early current evolution is 
crucial for stability à created new bN ramp up recipe

Changes !i, current 
penetration
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Applied modifications to show causality. (1) Heating delay

!𝑩𝒏"𝟏

Ip (MA)

bN

PNBI (MW)

!i

TNBI (Nm)

• Database of pulses with only 
change to the H-mode transition 
time shows the late timing is 
robustly stable

• Trajectory of !i shows current 
profile evolution is different
– !i is not sufficient to predict 

stability
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bN
!i

PNBI (MW)

TNBI (Nm) Density (1019m-3)

Ip (MA)

Applied modifications to show causality. (2) Ip ramp rate

• Slower Ip ramp rates are robustly 
stable – similar effect as heating 
delay

• Combination of Ip ramp and 
heating time changes can tailor 
the stability to the hardware 
requirements
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"𝑩𝒏.𝟏

!i

Density (1019m-3)

fELM (Hz)D2 (Tl/s)

Ip (MA)

bN

PNBI (MW)

TNBI (Nm)

Applied modifications to show causality. (3) D2 gas "bleed"

• Modest gas "bleed" eliminates 
LATE modes

• Results in more regular and 
more frequent ELMs

• Little difference in density
• No difference in energy 

confinement 
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"𝑩𝒏.𝟏

!i

Density (1019m-3)

fELM (Hz)D2 (Tl/s)

Ip (MA)

bN

PNBI (MW)

TNBI (Nm)

Applied modifications to show causality. (3) D2 gas "bleed"

• Modest gas "bleed" eliminates 
LATE modes

• Results in more regular and 
more frequent ELMs

• Little difference in density
• No difference in energy 

confinement 

The passive stability is robust and repeatable 
under a variety of conditions

• Different Ip, BT, ne, gas
• Wall conditions
• Heating mix
• Open/closed divertor
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Effect of e- Heating: Early ECH Deposition Location 
Can Negatively Affect the TM Stability

- Rising Teped à 2/1 mode

- Sometimes correlated with rECH>0.85, 
but other factors apply

- Some cases are at the marginal point: 
small perturbations can cross the 
threshold

bN

Teped

rECH Stable: 174480, 174486
Unstable: 174481, 174482, 174483, 174487

disruption
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!i Sets the Teped Threshold: Global Classical D’ Effect

(marginal)

Time

Unstable

Stable

- Timing matters: higher Teped
late can be stable

- !i decreases à the well is 
shallower à equilibrium can 
survive a higher pedestal

- Effect of Te on Jpedestal is the 
limiting factor (not absolute Te!)

!i

Expanded database of all 2017-2018:

(early)(late)

IBS database with ECH and Torque = 0 Nm
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Te Has a Much Larger Impact on Jboot than ne, Ti in 
These Plasmas
- J profile responds to local Jboot changes due to fixed total plasma current

- Classical tearing index D’ changes as a function of global J profile

Jboot

𝑱𝒃 𝛁𝑻𝒆

𝑱𝒃 𝛁𝑻𝒊
𝑱𝒃 𝛁𝒏𝒆

t = 2.1, 2.3, 3, 4 s
174480

Lower !i à
Shallower well

r

𝛁J 
out𝛁J in

tim
e

tim
e

Calculated Jboot contributions (Sauter model)
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ECH Power Near q=2 is Significantly Detrimental to 
Performance

- Moving 3 MW of ECH from r=0.5 
to r=0.8 decreases tE by 25-30%, 
H98y2 by 15-18%

𝜂!"#$%&' ≈ 1 − 𝜌()*+

Expect 50% drop in tE, observe 25%

Loss of heating efficiency
compensated by transport 

improvement

This is also observed clearly in the full database (220 shots)
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• Reduced IBS database at T=0-1 Nm

• n=1 external field rotating at 20 Hz

• Magnetic probes measure the plasma 
response of the external kink

- Signals: response amplitude & phase vs 
external field

- Phase shows a "jump" when approaching 
a limit

Figure courtesy of J. Hanson

MHD Spectroscopy Measurements Shows the Approach 
to a Stability Limit
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Realtime AMS Signals May Become a Stability Sensor

• IBS plasmas have intermittent 3/1 bursts 
and 1/1 sawtooth precursors

• Spectroscopy amplitude and phase 
changes are largest with large 2/1 
component

• Relative measures help discard false 
positives – intrinsic dependence on bN, !i
Use A, j,                – shot average 2/1

3/1

Amplitude (G/kA)

Phase (°)

"𝑩 n=1

149409

Time (s)

𝑨 , cos𝝋

bN
(G/5)

𝑨 , cos𝝋
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"𝑩 n=1

Time (s)

bN
(G/5)

⁄𝒅 𝑨 , cos𝝋 𝒅𝒕

𝑨 , cos𝝋

Amplitude (G/kA)

2/13/1

• When the 3/1 activity is stronger and 
continuous, the derivative of the signals 
is a good indicator of the 2/1 mode

• Slowly growing 2/1 modes are harder to 
detect, but in that case spectroscopy 
picks up imminent locking 

à Deploy disruption mitigation systems

149408

Realtime AMS Signals May Become a Stability Sensor

0.2

0.2
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Stable
Unstable

⁄
𝒅
𝑨
,c
os
𝝋

𝒅𝒕
−
𝑨𝒗
𝒆𝒓
𝒂𝒈
𝒆

𝑨 , cos𝝋 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒

• To generalise and quantify, 
chose evolution of

𝑨 $ cos𝝋, ⁄𝒅 𝑨 $ cos𝝋 𝒅𝒕

• Compare to shot average
(plasma response typical of
that shot ß bN, !i dependent)

• Unstable shots shoot out of 
stable envelope at time of 
mode

In Stable Shots, A and j Show Little Excursion from Average

At mode

Locks
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Stable
Unstable

⁄
𝒅
𝑨
,c
os
𝝋

𝒅𝒕
−
𝑨𝒗
𝒆𝒓
𝒂𝒈
𝒆

𝑨 , cos𝝋 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒

(25 shots)

• Limits of stable envelope 
can be used to define 
sensor trigger values

• Other choices of signals are 
possible, depending on the 
scenario parameters

Careful Choice of Limits can Lead to a Real-Time Sensor 
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Conclusions

• “Physics driven” disruptions are only relevant to low q95 (pulsed) 
inductive scenarios

• In the IBS there are no good actuators to rein in the instabilities (no 
JNI, JECCD fails to stabilize the modes, off-axis power prevents to 
reach the goals)

• Passive stability is the best option, and it has been demonstrated

• Indirect actuators may be an option if the conditions evolve on the 
flattop: squareness and triangularity changes
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un
sta
ble

Preview on effect of shape on current density and stability

unstable

un
sta
ble

unstable

unstable

Small shape changes can change 
the pedestal during the flattop

larger shape


