Scenario optimization and instability monitoring to reach the Q=10 ITER mission without disruptions

by **F. Turco¹** with T.C. Luce², C.C. Petty³, J.M. Hanson¹, A. Hyatt³, G.A. Navratil¹, A. Turnbull², S. Smith³, H Shen³

Columbia U.
 ITER organisation
 General Atomics

Presented at the Technical Meeting on Plasma Disruptions and their mitigation July 20, 2020 (remote)

Where do disruptions occur? (not where you think)

 Reactor relevant scenarios for steady-state power production are operated at q₉₅>=5

NO disruptions at q_{95} >=5

- At any β
- With any instability
- With any radiated fraction
- Physics caused disruptions only occur at q₉₅<~3.8
- Inductive scenario for high gain, pulsed, operation
- Low β_N , very low J_{NI} , low input power

I will focus on the low q_{95} ITER Baseline Scenario, where disruptions occurr

ITER Baseline Scenario demonstrated in DIII-D matching most parameters

- Finding the cause of the disruptive tearing modes in the IBS
- Modify the scenario to operate in a passively stable state
- Why the need for passive stability: negative aspects of offaxis ECCD
- A way to measure the approach to instability: Active MHD Spectroscopy

Contents

- Finding the cause of the disruptive tearing modes in the IBS
- Modify the scenario to operate in a passively stable state
- Why the need for passive stability: negative aspects of offaxis ECCD
- A way to measure the approach to instability: Active MHD Spectroscopy

IBS: Tension Between Stability and Confinement

- ITER Q=10 mission: P_{fus} =500 MW, high gain \rightarrow high I/B, low input power
- $q_{95}=3$ + sawteeth \rightarrow q=2 near the edge
- >2017: Passively stable zero torque IBS plasmas with NBI+ECH power

"Unstable" Shots Are Terminated By an m=2/n=1 Tearing Mode

- The plasma current is mostly inductive → J profile tailoring by NI sources is ineffective (CD is not a viable actuator)
- J_{boot} dominates the pedestal, q=2 at ρ~0.8 → Strong correlation with pedestal/edge due to fixed Ip
- Many shots are terminated by a 2/1 tearing mode
 - At high and low torque
 - It locks and disrupts within 50-150 ms
 - ECCD stabilization isn't effective (low T_e , j_{CD} ; fast growth, lock)

The IBS Instabilities Are Not Due to a β_N Limit

- The modes appear after >10 τ_E at constant pressure
- Well below the no-wall MHD limit

8

• Lower β_N does not lead to better stability

These are very likely classically unstable TMs, **not NTMs:**

- Onset after 10s sawteeth, ELMs, 100s τ_{tear} at fixed pressure \rightarrow on τ_R scale
- J_{boot} is very small everywhere, and minimum at q=2 (inductive!)
- J_{eccd}/J_{boot} >1-2 does not stabilize (Δ ' is the drive, not J_{boot})

Database of ~240 IBS Plasmas Analysed for Global and Local Quantities

- Local current density measured by raw MSE data
- "Enhanced" efits for q and J, with MSE+magnetics and a pedestal
- → Magnetics + edge constraints describe the pedestal (similar to kinetic efit)
- → MSE constrains the core up to ρ ~0.8
- Unstable = at time of 2/1 mode onset
- Stable = stable time slices on the β_N flattop

Changes in the Current Profile Are Correlated with Tearing Instability

Unstable points fall predominantly in the lower right region (larger gradients)

Changes in the Current Profile Affect the Classical Tearing Index Δ^{\prime}

- Long term dependence on J suggests stable and unstable times have different ∆': classical drive
- Δ ' is a GLOBAL parameter, determined by all the current profile
- Δ '>0 is necessary, not sufficient for instability:

 $\rightarrow \Delta'$ trends determine if more/less stable

 \rightarrow For instability, $\Delta' > \Delta'_{crit}$ (inner layer physics)

67% of the Instabilities Occur Before 1.3 s on the β_N Flattop (1-1.5 τ_R in DIII-D)

More stable current profile late, fewer unstable shots after ~1 s
 → if we solve the access problem, high probability of remaining stable

12 NATIO

- Finding the cause of the disruptive tearing modes in the IBS
- Modify the scenario to operate in a passively stable state
- Why the need for passive stability: negative aspects of offaxis ECCD
- A way to measure the approach to instability: Active MHD Spectroscopy

Database study indicates that the early current evolution is crucial for stability \rightarrow created new β_N ramp up recipe

Fixed zero torque

Applied modifications to show causality. (1) Heating delay

- Database of pulses with only change to the H-mode transition time shows the late timing is robustly stable
- Trajectory of ℓ_i shows current profile evolution is different
 - $\begin{array}{ll} & \ell_i \text{ is not sufficient to predict} \\ & \text{stability} \end{array}$

Applied modifications to show causality. (2) I_p ramp rate

- Slower Ip ramp rates are robustly stable – similar effect as heating delay
- Combination of Ip ramp and heating time changes can tailor the stability to the hardware requirements

Applied modifications to show causality. (3) D_2 gas "bleed"

- Modest gas "bleed" eliminates LATE modes
- Results in more regular and more frequent ELMs
- Little difference in density
- No difference in energy confinement

Applied modifications to show causality. (3) D_2 gas "bleed"

1.5

0.5

- Modest gas "bleed" eliminates LATE modes
- Results in more fre
- Little diff
- No differ confiner
- The passive stability is robust and repeatable under a variety of conditions
 - Different Ip, B_T, n_e, gas
 - Wall conditions
 - Heating mix
 - Open/closed divertor

lp (MA)

1.05

0.95

- Finding the cause of the disruptive tearing modes in the IBS
- Modify the scenario to operate in a passively stable state
- Why the need for passive stability: negative aspects of offaxis ECCD
- A way to measure the approach to instability: Active MHD Spectroscopy

Effect of e- Heating: Early ECH Deposition Location Can Negatively Affect the TM Stability

- Rising Te_{ped} \rightarrow 2/1 mode
- Sometimes correlated with ρ_{ECH} >0.85, but other factors apply
- Some cases are at the marginal point: small perturbations can cross the threshold

ℓ_{i} Sets the Te_{ped} Threshold: Global Classical Δ' Effect

Expanded database of all 2017-2018:

- Timing matters: higher Te_{ped}
 late can be stable
- ℓ_i decreases → the well is shallower → equilibrium can survive a higher pedestal
- Effect of T_e on J_{pedestal} is the limiting factor (not absolute T_e!)

T_e Has a Much Larger Impact on J_{boot} than n_e, T_i in These Plasmas

- J profile responds to local J_{boot} changes due to fixed total plasma current
- Classical tearing index Δ ' changes as a function of global J profile

ECH Power Near q=2 is Significantly Detrimental to Performance

- Moving 3 MW of ECH from ρ =0.5 to ρ =0.8 decreases τ_{E} by 25-30%, H_{98y2} by 15-18%

 $\eta_{heating} pprox 1 - \rho_{ECH}^2$

Expect 50% drop in τ_E , observe 25%

Loss of <u>heating efficiency</u> compensated by <u>transport</u> <u>improvement</u>

This is also observed clearly in the full database (220 shots)

Contents

- Finding the cause of the disruptive tearing modes in the IBS
- Modify the scenario to operate in a passively stable state
- Why the need for passive stability: negative aspects of offaxis ECCD
- A way to measure the approach to instability: Active MHD Spectroscopy

MHD Spectroscopy Measurements Shows the Approach to a Stability Limit

- Reduced IBS database at T=0-1 Nm
- n=1 external field rotating at 20 Hz
- Magnetic probes measure the plasma response of the external kink
- Signals: response amplitude & phase vs external field
- Phase shows a "jump" when approaching a limit

Realtime AMS Signals May Become a Stability Sensor

- IBS plasmas have intermittent 3/1 bursts and 1/1 sawtooth precursors
- Spectroscopy amplitude and phase changes are largest with large 2/1 component
- Relative measures help discard false positives – intrinsic dependence on β_N, ℓ_i
 Use A, φ, A · cos φ – shot average

Realtime AMS Signals May Become a Stability Sensor

- When the 3/1 activity is stronger and continuous, the derivative of the signals is a good indicator of the 2/1 mode
- Slowly growing 2/1 modes are harder to detect, but in that case spectroscopy picks up imminent locking
- \rightarrow Deploy disruption mitigation systems

In Stable Shots, A and ϕ Show Little Excursion from Average

• To generalise and quantify, chose evolution of

 $A \cdot \cos \varphi, d(A \cdot \cos \varphi)/dt$

- Compare to shot average (plasma response typical of that shot ← β_N, ℓ_i dependent)
- Unstable shots shoot out of stable envelope at time of mode

Careful Choice of Limits can Lead to a Real-Time Sensor

- Limits of stable envelope can be used to define sensor trigger values
- Other choices of signals are possible, depending on the scenario parameters

Conclusions

- "Physics driven" disruptions are only relevant to low q95 (pulsed) inductive scenarios
- In the IBS there are no good actuators to rein in the instabilities (no JNI, JECCD fails to stabilize the modes, off-axis power prevents to reach the goals)
- Passive stability is the best option, and it has been demonstrated
- Indirect actuators may be an option if the conditions evolve on the flattop: squareness and triangularity changes

Preview on effect of shape on current density and stability

