Control Solutions Supporting Disruption Free Operation on DIII-D and EAST

Jayson Barr¹

with N.W. Eidietis¹, D.A. Humphreys¹, A. Hyatt¹, N. Logan², N.N. Bao⁴, Z.P. Luo⁴, E. Olofsson¹, B. Sammuli¹, W. Wehner¹, C. Rea³, R. Granetz³, Y. Huang⁴, B. Xiao⁴, Z. Xing², J. Hanson⁵

¹ General Atomics
 ² Princeton Plasma Physics Lab
 ³ MIT

⁴ Chinese Acad. of Sci., ASIPP

⁵ Columbia University

Presented at the 2020 ITER TM on Disr. & Mit.

July 20th-23rd, 2020

Comprehensive disruption prevention must cover the full range of control regimes

- 1. Continuous Prevention:
 - Stable scenarios
 - Regulate stability vs performance
 - Mode Suppression
 - Should prevent 99%+ of disruptions!

2. Asynchronous Avoidance:

- Perturbative mode response, state-change
- Temporarily de-rate scenario, then return
- Should need to prevent < 0.9% disruptions!

3. Emergency Avoidance:

Rapid Controlled shutdown:

- Large piggyback study on DIII-D
 - < 0.09% of disruptions!</pre>

Mitigation should be the last resort:

- Has side-effects
 - < 0.01% of disruptions!

2

Disruption Free Protocol: Large-scale piggyback in addition to dedicated XPs to confidently qualify disruption solutions

The Disruption Free Protocol:

- To qualify <u>ITER-scalable</u>, <u>comprehensive</u> disruption control in <u>routine operations</u>
- Large-scale piggyback: 43% days in '19

Dedicated XPs: Detailed physics understanding

Control Tests: Develop, test, & demonstrate

Large-scale Explore, qualify, & Piggyback: integrate

Comprehensive disruption prevention must cover the full range of control regimes

A new proximity-to-instability control architecture has been developed for DIII-D and EAST in FY 2020

Stability estimators:

- Stability **metrics** &
- Stability *limits*
- Error bars!

Target modification:

- Problem focused
- Maps stability to plasma target mod's

Integration:

- D3D PCS Architecture:
 - Integrate with actuator algorithms
- Future (missing) piece: actuator authority

A new proximity-to-instability control architecture has been developed for DIII-D and EAST in FY 2020

Stability estimators:

- Stability **metrics** &
- Stability *limits*
- Error bars!

Target modification:

- Problem focused
- Maps stability to plasma target mod's

Integration:

NATIONAL ELISION FACIL

- D3D PCS Architecture:
 - Integrate with actuator algorithms
- Future (missing) piece: actuator authority

Handling safety margins and implementing responses

Generalized architecture

- Choice of input stability models (VDE Ex: estimated γ , I_i , or K)
- Tunable PIDs, matrices map stability "errors" to target modifications

Thresholds for action

- Action taken above threshold margin of stability, acceptable uncertainty
- Target mods relative to nearness to stability limit. Ex: (metric-ref)/(lim-ref)
- Future: "Hazard function" analysis
- Output target mods combined, weighted by problem importance
 - Future: implement true actuator sharing / authority and supervisory control

Proximity controller applied for robust VDE prevention using novel NN-based VDE- γ estimator for shape target feedback

- Novel NN-based VDE-γ estimator
- K ramped to induce VDE
 - Disrupt@t=1.9s
 - (red, blue)
- <u>With</u> Proximity Control:
 - γ held at safe levels
 - Controlled via gapln, K

Proximity controller applied for robust VDE prevention using novel NN-based VDE- γ estimator for shape target feedback

- Novel NN-based VDE-γ estimator
- K ramped to induce VDE
 - Disrupt @ t=1.9s
 - (red, blue)
- <u>With</u> Proximity Control:
 - γ held at safe levels
 - Controlled via gapln, K
- VDEs prevented until proximity controller disabled

Shaping targets adjusted in real-time to ensure stability

10

Multiple stability metrics are controlled in parallel, demonstrated with Active MHD Spectroscopy

J. Barr/ITER Tech. Mtg. on Disr. & Mit./July 20th-23rd, 2020

- Active MHD Spectroscopy (AMS) newly incorporated
 - 1st test: added NBI to increase $\beta_N/l_i \rightarrow$ amplify plasma response
 - Controller to reduce triangularity w/AMS
 - Future: attempt TM onset prevention?
- **Proximity Controller applied** VDE protection in ||
 - **AMS:** reduce top triangularity
 - VDE-y: reduce elongation

Interpretable ML currently being integrated into proximity controller for experiments in 2020

- Control paradigm with interpretable ML:
 - Monitoring prox. to edge of stable operating space
- DPRF: Disruption Prevention via Random Forests

C. Rea Nucl. Fusion 2019

- Contr. factors (f_c) should map to controllable params
- Responses scaled by:
 - Overall risk (& <u>thresholds!</u>)
 - Contribution-specific factor
- Direction (sign) of response:
 - Just mod unstable targets?
 <u>Reinforce stable ones too?</u>

12

Interpretable ML currently being integrated into proximity controller for experiments in 2020

- Control paradigm with interpretable ML:
 - Monitoring prox. to edge of stable operating space
- DPRF: Disruption Prevention via Random Forests

C. Rea Nucl. Fusion 2019

- Contr. factors (f_c) should map to controllable params
- Responses scaled by:
 - Overall risk (& thresholds!)
 - Contribution-specific factor
- Direction (sign) of response:
 - Just mod unstable targets?
 <u>Reinforce stable ones too?</u>

<u>Robust</u> control is a requirement for safe operations near stability limits

- Operational limits are limited by physics & control
- Robustly controllable VDE growth-rates assessed on EAST in recent experiments
 - Variations in shaping and li to scan γ , RT estimated
- Robust control at $\gamma \sim 550$ /s for >= 2s
 - RT- γ accuracy confirmed with triggered VDEs: < 20% err.
- Future experiments:
 - Assess of max dZ displacements tolerable
 - Scaling with noise, ELMs
 - Porting prox. Ctrl. to EAST

J. Barr/ITER Tech. Mtg. on Disr. & Mit./July 20th-23rd, 2020

Comprehensive disruption prevention must cover the full range of control regimes

15

DIII-D Off Normal & Fault Response Algorithm: a State-Machine for Asynchronous Disruption and Device Protection

Comprehensive disruption prevention must cover the full range of control regimes

NATIONAL FUSION FACILITY

17

J. Barr/ITER Tech. Mtg. on Disr. & Mit./July 20th-23rd, 2020

< 0.01% of disruptions!

Has side-effects

Qualifying fast, emergency shutdown after large n=1 tearing, locked modes for effectiveness on DIII-D

- Focused application to Emergency Shutdowns (SN)
 - After detect large n=1 tearing, locked mode
- Applied shutdown survey recipe¹:
 - $-~dI_{p}/dt \sim 2\text{--}3~\text{MA/s}$, sustained $\text{P}_{\text{NBI}}\text{--}2\text{--}3\text{MW}$
- Metric of success is lower final I_N : $W_m \sim I_p^2 \sim I_N^2$

Example emergency shutdown:

Qualifying fast, emergency shutdown after large n=1 tearing, locked modes for effectiveness on DIII-D

- Focused application to Emergency Shutdowns (SN)
 - After detect large n=1 tearing, locked mode
- Applied shutdown survey recipe¹:
 - $-~dI_{p}/dt \sim 2\text{--}3~\text{MA/s}$, sustained $\text{P}_{\text{NBI}}\text{--}2\text{--}3\text{MW}$
- Metric of success is lower final I_N : $W_m \sim I_p^2 \sim I_N^2$

Example emergency shutdown:

Transitioning to limited topology for emergency shutdown dramatically reduces LM disruption risk on DIII-D

- After LM is detected, shape modification immediately applied:
 - **Continuing diverted (SN):** <u>19%</u> reach $I_N < 0.3$ (ITER req.), <u>26%</u> $I_N < 0.5$
 - Transitioning to limited (from SN): <u>53%</u> reach $I_N < 0.3$ (ITER req.), <u>74%</u> $I_N < 0.5$
- Despite common use and improvements, ITER must achieve better
- Synergy with multiple prevention tools likely required: ECH, RMP spin-up strategies (many) **Focus on LM disruptions:**

Methods for heat flux control during limited shutdown under investigation, including shape modification

- Tile heat-fluxes limit the acceptable Ip, W_{mhd,}, ... when plasma can limit
 - Current ITER plan: stay diverted when Ip > 3 MA
 - Emergency lim. shutdown is a common tool, advantage of reduced disruptivity
- Dropping elongation while limited can reduce heat-flux on inner wall:
 - Reducing K increases λ_q (Horacek¹): $\lambda_q = 10 \left(\frac{P_{SOL}}{V} \right)^{-0.38} \left(\frac{a}{R_0 \kappa} \right)^{1.3}$
 - Can reduce heat flux (incl. touch-pt)
 - SMITER^{2,3} modeling: lim. discharge w/K
 change for 1st investigation (H. Anand)
 - Const. P_{sol}=0.4MW, assumes single-exp q₁₁
- Shutdown (already) requires κ drop for VDE stability (l_i rising)
- Further improvement with impurity fueling³?

[1] J. Horacek Plasma Phys. Control. Fusion 2016[3] H. Anand Nuclear Fusion 2019[2] L. Kos Fusion Eng. And Design 2018[4] F. Nespoli Phys. Plasmas 2018

Methods for heat flux control during limited shutdown under investigation, including shape modification

- Tile heat-fluxes limit the acceptable I_p , $W_{mhd,r}$... when plasma can limit
 - Current ITER plan: stay diverted when Ip > 3 MA
 - Emergency lim. shutdown is a common tool, advantage of reduced disruptivity
- Dropping elongation while limited can reduce heat-flux on inner wall:
 - Reducing K increases λ_q (Horacek¹): $\lambda_q = 10 \left(\frac{P_{SOL}}{V} \right)^{-0.38} \left(\frac{a}{R_0 \kappa} \right)^{1.3}$
 - Can reduce heat flux (incl. touch-pt)
 - SMITER^{2,3} modeling: lim. discharge w/K change for 1st investigation (H. Anand)
 - Const. P_{sol}=0.4MW, assumes single-exp q₁₁
- Shutdown (already) requires κ drop for VDE stability (l_i rising)
- Further improvement with impurity fueling³?

J. Horacek Plasma Phys. Control. Fusion 2016
 L. Kos Fusion Eng. And Design 2018

EAST record-fast shutdown developed for general and emergency use

- Fast, diverted & limited shutdown scenarios developed for EAST
- Started from DIII-D shutdown study recipe: faster dI_p/dt , sustained P_{LH}
- New limited scenario developed
 - Feed-forward currents always a challenge with long-pulse
 - → Importance of RT-FF or MPCs
- 0.7 MA/s achieved safely:
 - Scales to 0.1 MA/s speeds on ITER

Safe shutdown up to 0.7 MA/s on EAST

Machine Learning integrated with DIII-D Fault Response control for real-time trigger for disruption prevention

- A variety of ML disruption predictors are integrated with the DIII-D Off Normal & Fault Response System, and participate in the Disruption Free Protocol
- Disruption Prediction via Random Forests (DPRF) interpretable ML (C. Rea*)
 - Triggered early (attempted) shutdown, ECH, MGI...
- ML disruptivity with decision trees (Y. Fu*)
 - Triggered modified (faster) shutdown programming

Conclusions: DIII-D & EAST are developing, testing, and qualifying control tools for comprehensive disruption avoidance

- DIII-D Disruption Free Protocol: qualify disruption prevention tools in time for ITER
- Off Normal & Fault Response and Proximity-to-instability controllers designed to prevent disruptions over handle wide range of control regimes
 - Porting to EAST in progress
- Novel "Proximity-to-Instability" control architecture implemented for real-time scenario modification to maintain stability, applied for robust VDE prevention
 - Operates continuous and handles multiple physics problems in parallel
- The effectiveness of emergency shutdown for disruption prevention is being rigorously quantified on DIII-D and EAST
 - Changing to a limited shutdown dramatically reduces the disruption risk in emergency shutdowns.
- **DFP 2020 experimental priorities:** rigorous qualification of...
 - Wide application of proximity control for: **tearing**, **locked mode** prevention (STRIDE, ML, AMS...
 - Focused qualification (of the many) *tearing, locked mode* response techniques

