

2D Te patterns of various disruptive events and retardation of turbulence-associated disruption with the non-resonant magnetic field

<u>Minjun J. Choi,</u> Jayhyun Kim, Jae-Min Kwon, Jaehyun Lee, Minwoo Kim, Minho Kim, Gunsu Yun*, Yongkyoon In**, Hyeon K. Park**, Byoung-Ho Park

National Fusion Research Institute, Daejeon 34133, Korea *Pohang University of Science and Technology, Pohang, Gyungbuk 37673, Korea **Ulsan National Institute of Science and Technology, Ulsan 44919, Korea

Introduction

- Most disruptions are caused by nonlinear growth of MHD instabilities
 - They are inherently complex process
- High dimensional diagnostics are essential to study the nonlinear evolution of the disruptive instabilities
 - The better understanding would allow the better mitigation/avoidance or the earlier warning
- In KSTAR experiments, various disruptive events have been observed by a local 2D electron temperature (T_e) diagnostics (Electron Cyclotron Emission Imaging, ECEI)

[M.J. Choi, IAEA TM, July, 2020]

KSTAR ECEI diagnostics

- In tokamaks, $\omega_{ce}(R, z) \propto B(R, z) \approx B_t(R) \propto 1/R$
- If the plasma is *optical thick* for radiation at some frequency ω , radiation intensity = black body level, $I(\omega) = I_{BB}(\omega) = \frac{\omega^2}{8\pi^3 c^2} T_e$

KSTAR ECEI

- 3 ECEI systems at two toroidal ports
- Diagnostics characteristics
 - Spatial resolution ~ 2 cm
 - Temporal resolution ~ 1 us

Outline

- 2D observations of various disruptive events
 - Sawtooth crash (m=1 internal kink driven magnetic reconnection)
 - Off-normal sawtooth crash (m=3)
 - Tearing mode disruption
 - Interchange mode disruption
 - Multi mode disruption (kink + tearing + interchange)
 - Anomalous cases
 - Ballooning fingers in density limit disruption
 - $T_{\rm e}$ turbulence in locked mode disruption
- Retardation of the turbulence-associated locked mode disruption with the additional non-resonant magnetic perturbation (NRMP) field

Sawtooth crash: m=1 internal kink driven disruption

■ m=1 kink → Crescent island growth + shrinkage of circular hot core → Full reconnection until the island is fully grown

K§TAR

[M.J. Choi, IAEA TM, July, 2020][2D observations][Sawtooth crash]

$m \geq 1$ kink modes in the ECE image

- ECRH is often used to control the sawtooth crash
- ECRH around q=1 leads to onset of m>1 modes G.S. Yun, PRL, 109, 145003, 2012 G.H. Choe, NF, 55, 013015, 2015
- $(T_e \langle T_e \rangle) / \langle T_e \rangle$ images are useful to identify the mode structure

Flux displacements by kink modes in

Normalized T_e perturbation of kink modes in $(T_e - \langle T_e \rangle) / \langle T_e \rangle$ images

[M.J. Choi, IAEA TM, July, 2020][2D observations][Sawtooth crash]

Off-normal sawtooth crash with m=3

Discharge condition

NFRI [M.J. Choi, IAEA TM, July, 2020][2D observations][Sawtooth crash]

Off-normal sawtooth crash with m=3

- Discharge condition
- $-B_{\rm T} = 3.0 \text{ T}, I_{\rm p} = 0.5 \text{ MA}, q_{95} = 7.0,$ NBI ~ 4.0 MW, ECRH ~ 0.8 MW, L-mode limiter plasma $\underbrace{-3500}_{500} \underbrace{-3000}_{500} \underbrace{-3000}_{500} \underbrace{-3000}_{6.75} \underbrace{-3000}_{6.80} \underbrace{-6.85}_{6.80} \underbrace{-6.90}_{6.90} \underbrace{-6.95}_{6.95} \underbrace{-7.00}_{7.00}$
 - m=3 kink → Slow leakage of heat with island growth → Fast heat release with poloidally overlapping islands

Rotating magnetic island in the ECE image

 δT_e/(T_e) images of magnetic island show a radial phase inversion across X/O-point

FR [M.J. Choi, IAEA TM, July, 2020]

Locked mode disruption

 Discharge condition
 $B_{\rm T} = 2.0$ T, $I_{\rm p} = 0.6$ MA, $q_{95} = 4.0$, NBI ~ 2.6 MW, L-mode limiter plasma

Tearing mode growth
 → Mode locking →

 Locked mode disruption

K5TAR 10

Sudden expansion of the locked island

• $(T_e - \langle T_e \rangle_{Ref}) / \langle T_e \rangle_{Ref}$ images provide a relative T_e change against the Ref period

Tearing mode growth

 → Mode locking →
 Locked mode disruption
 by a sudden expansion
 of the locked island

[M.J. Choi, IAEA TM, July, 2020][2D observations][Tearing mode disruption]

Interchange mode disruption

- Discharge condition
 - $B_{\rm T} = 2.0$ T, $I_{\rm p} = 0.6$ MA, $q_{95} = 4.4$, Ohmic plasma with n=1 RMP
 - Plasma was pushed to the outboard wall by control loss after several locked mode disruptions

[M.J. Choi, IAEA TM, July, 2020][2D observations][Interchange mode disruption]

Infiltration of cold bubble

- Discharge condition
 - $B_{\rm T} = 2.0$ T, $I_{\rm p} = 0.6$ MA, $q_{95} = 4.4$, Ohmic plasma with n=1 RMP
 - Plasma was pushed to the outboard wall by control loss after several locked mode disruptions
- Quasi-interchange like mode grows, leading to major disruption

[M.J. Choi, IAEA TM, July, 2020][2D observations][Interchange mode disruption]

Disruption by multi mode interactions

- Discharge condition
 - $B_{\rm T} = 2.0$ T, $I_{\rm p} = 0.6$ MA, $q_{95} = 4.0$, NBI ~ 2.6 MW, L-mode limiter plasma

Tearing mode growth

 → Mode locking →
 ⊥
 Locked mode disruption ^B
 → Sawtooth crash →
 1
 Major disruption

Kink + tearing + interchange mode

- Discharge condition
 - $-B_{\rm T} = 2.0$ T, $I_{\rm p} = 0.6$ MA, $q_{95} = 4.0$, NBI ~ 2.6 MW, L-mode limiter plasma
- Tearing mode growth \rightarrow Mode locking \rightarrow Locked mode disruption 10 \rightarrow Sawtooth crash \rightarrow z [cm] -10 Major disruption by a -20 coalescence btw cold bubbles and the island

066013, 2016

K5TAR 15

[M.J. Choi, IAEA TM, July, 2020][2D observations][Multi mode disruption]

Density limit disruption

- Discharge condition
 - $B_{\rm T}$ = 2.0 T, $I_{\rm p}$ = 0.6 MA, q_{95} = 4.0, NBI ~ 1.5 MW, ECH ~ 0.6 MW, H-mode plasma with SMBI pulses
- Profile contraction by edge cooling
 → Growth of 2/1 tearing mode →
 Disruption

Density limit disruption

- Discharge condition
 - $B_{\rm T}$ = 2.0 T, $I_{\rm p}$ = 0.6 MA, q_{95} = 4.0, NBI ~ 1.5 MW, ECH ~ 0.6 MW, H-mode plasma with SMBI pulses
- Profile contraction by edge cooling
 → Growth of 2/1 tearing mode →
 Disruption

 Heat release with ballooning fingers is observed

Anomalous locked mode disruption

- Discharge condition
 - $B_{\rm T}$ = 2.2 T, $I_{\rm p}$ = 0.6 MA, q_{95} = 4.8, NBI ~ 1.0 MW, L-mode plasma with n=1 RMP
- Typical locked mode disruption
 - Largest heat release occurs when the island expands

m=2 island expansion

[M.J. Choi, IAEA TM, July, 2020][2D observations][*T*_e turbulence-associated locked mode disruption]

The largest heat release by axisymmetric T_e collapse near the locked mode region

- Discharge condition
 - $B_{\rm T}$ = 2.2 T, $I_{\rm p}$ = 0.6 MA, q_{95} = 4.8, NBI ~ 1.0 MW, L-mode plasma with n=1 RMP
- Typical locked mode disruption
 - Largest heat release occurs when the island expands

• Locked mode disruption with axisymmetric T_{e} collapse

[M.J. Choi, IAEA TM, July, 2020][2D observations][T_e turbulence-associated locked mode disruption]

T_e turbulence near the X-point of the locked mode can play a role in the anomalous locked mode disruption

- Discharge condition
 - $B_{\rm T}$ = 2.2 T, $I_{\rm p}$ = 0.6 MA, q_{95} = 4.8, NBI ~ 1.0 MW, L-mode plasma with n=1 RMP
- T_e turbulence near the X-point
 - Broadband \tilde{T}_{e} power was increased before the disruption
 - Turbulence
 can cause further
 reconnection and
 stochastic transport

• Locked mode disruption with axisymmetric $T_{\rm e}$ collapse

R [cm] [M.J. Choi, IAEA FEC [M.J. Choi, IAEA TM, July, 2020][2D observations][*T*_e turbulence-associated locked mode disruption]

20

15

10

-5

-10

-15

-20

[cm]

N

Interim summary of 2D observations

- Sawtooth crash
 - Off-normal sawtooth crash (m=3): kink → magnetic reconnection → poloidal overlapping of islands
- Tearing mode disruption: sudden expansion of the locked island
- Interchange mode disruption: infiltration and expansion of cold bubble
- Multi mode disruption: kink + tearing + interchange
- Anomalous cases
 - Ballooning fingers in density limit disruption
 - $T_{\rm e}$ turbulence in locked mode disruption

Retardation of the turbulence-associated locked mode disruption with the additional non-resonant field

- Turbulence near the X-point seems to play a role in a locked mode disruption
- What happens if we suppress the turbulence by varying the local flow shear?
 - The non-resonant magnetic perturbation (NRMP) field can perturb the flow profile

Retardation of the turbulence-associated locked mode disruption with the additional non-resonant field

Discharge condition

J. Kim et al, *ITPA-MHD* (2019)

- The n=1 RMP leads to the violent locked mode disruption
- The additional n=2 NRMP resulted in mild locked mode disruptions

[M.J. Choi, IAEA TM, July, 2020][Retardation of T_e turbulence-associated locked mode disruption]

Dependence of turbulence strength and flow on the NRMP field amplitude

- The stronger n=2 NRMP field resulted in the weaker turbulence near the X-point of the n=1 island
 - The local flow (and probably shear across the region) is larger with the stronger n=2 perturbation field, which might be responsible for the weaker turbulence

K5TAR 24

- 2D measurements revealed detail process of various disruptive events
 - Disruption warning system should consider stability of various MHD instabilities including $m \ge 1$ kink, tearing mode, and interchange-ballooning mode
 - Coupling between multi mode can be more dangerous
- Retardation of the turbulence-associated disruption
 - The better understanding of the disruption process enables the better mitigation or avoidance of the disruption

