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» Overview of disruption management issues

e The ITER PCS & its role in disruption prevention/mitigation
» Control of proximity to controllability boundaries

» Exception Handling

» Forecasting and usefulness metrics for predictors

 The DMS and the specification of mitigation scenarios

» Research Implications and Conclusions
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Disclaimer and Caveats

» The following are personal thoughts on the ITER PCS, general
tokamak control, prediction of high-risk states, and disruption
prevention

* These perspectives and suggestions are not necessarily those of the
ITER 1O or the ITER PCS design group (but they should be...)

 However, technical figures here have generally been taken from
previously-shown and approved presentations from various sources...
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Disruption Prevention, Avoidance, and Mitigation
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Disruptions Are a Conirol and Operations Problem: Result of Insufficient Control of

Operating Regime, System Faults, and Operational Errors

——
Primary Causes of

Disruption

Vertical Displacement Event
* Insufficient control

capability for VL::tS.cO; || Wall impact,
operating regime + Controllability qos drops
off-normal events
Global Therma
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* (Design choice
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e (Human intention)

—
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Improved Control Leads to Reduced Disruption Rate

» JET disruptivity analysis [deVries, 2009]: ** AT Discharge Disruptivity by Year

- "...lower disruption rates [over time]... primarily
10 DIII-D
1997-2009: i J J i i u i B

due to improvement in technical ability to
operate JET”

- Experience' improved COHTrOl reduces per—ShOT 1997 1999 2000 2001 200; (232:)332190{(22;10195 2006 2007 2008 2009
disruptivity from ~10-15% reduced to <1-2%

\

Per-Shot Disruptivity [%]

 DIlI-D Steady-State Scenario disruption rate analysis
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- Replaces missing booftstrap current — : . : : : :

- Prevents disruption
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21 ECCD Power

[MW]

* Improved vertical control prevents VDE: : ; : :
- Routinely robust in operating devices ‘[ Plasma current
- High confidence extrapolation to ITER design
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A Complete Control Solution is the Necessary and Sufficient Condition for

Disruption-free Operation

e Control of tokamak plasmas involves
many different (somewhat) discrete
control goals

« Different types of control fall into different

Control Operating Regimes:
- Open-loop Passive Stable
- Closed-loop Passive Stable
- Actively Stabilized
- Asynchronous Control

* ITER has formalized approaches to off-
normal/fault responses:
- Pre-discharge shot validation
- Exception Handling
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ITER Disruption Prevention Strategy Employs Layers of Control to Successively

Reduce Disruptivity

Routine Use in Under Development/
4 Presentdevices Additional Elements of
15% Robust Nominal ITER Contfrol
Control
7 of Shots Passive Stability thru Pre-Shot
Disruptive State Regulation Validation
10% Active instability Proximity Control
control
FRTS & Predictors
Limited Exception -
Handling Exception
5% - Handling
Present device

| disruptivity with | Disruption-free | _
mature control Rapid Shutdown

»

Disruption Mitigation

Relative Maturity ———
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The ITER PCS and its Role in Disruption Management
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ITER PCS Functional Elements Implement the Layered Approach to Disruption

Prevention and Avoidance

e Minimize disruptivity in CONTINUOUS control:
- Control algorithms robust to noise/disturbances
- Standardized, validated algorithm building blocks: g-profile
compact controllers Equilibrium

(shape, Ip...)

Control Operating Regime Map

o Active, CONTINUOUS disruption PREVENTION:

- Control of proximity to controllability boundaries Divertor,
- Realtime forecasting of trajectories and prediction of Radiation

risk to prevent approach to boundaries Kinetic
State Open-loop

Passive stable

« ASYNCHRONOUS AVOIDANCE of disruptive states: (Be, 1. ...
- High-level Supervisory monitoring and action
- Actuator Management to coordinate limited resources
- Off-normal event and system fault prediction/detection
- Effective Exception Handling responses

Closed-loop
Passive stable

- Vertical _ " . =  Exceptions
* Mitigate HUM.AN .ERRO.R. Stability, , Shot Validation | (Off-normal/
- Shot validation: simulate expected control and MHD (Pre-discharge fault response)
exception handling performance | simulation) |
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ITER PCS Architecture Enables All Control Functions and Provides Flexible,

Scalable Framework for Subsequent Research Phases
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ITER First Plasma Requires Very Limited Disruption Management

« 0.1 s < pulse length < few seconds Y —— I
QO | F 2

+ 0.1<Ip<1.0MA =

— Algorithms/EH hold < 0.5 MA /_15

. . RC

« Ohmic heating only 0

— ECH < ~6 MW for pre-ionization/ g 05/

burnthrough assist -1y

— Exception handling in PCS + CIS -1.5¢

* Limited in-vessel components and
protection, limited diagnostics:

— Basic position control with SC PF’s
— No in-vessel VS3 call
— Exception handling for RE, etc...
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ITER PCS Design Elements Provide Performance, Robustness, Low Disruptivity

Beyond First Plasma:

Tl
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Most Continuous Control Algorithms Will Have Two Parallel Functions: Nominal

and Controllability Proximity Regulation

Use these controls... ...lo ALSO regulate these (different control goails):

| Equilibrium/Boundary Control Proximity fo vertical
controllability bounda

| Vertical stabilization

«~~Proximity to MARFE/radiafi
| Divertor detachment ollapse boundary

- | Profile control Proximity to Tearing moc
boundary

Control Operating Regime Map

- | Tearing mode stabilization

Vertical Exceptions

Stability === == : (Off-normal/
D ’ ’ ’ D Shot Validation fault response)
Humphreys/BPO Seminar/October 2018 I (Pre-discharge | 1L ATOMICS
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Continuous Regulation of Proximity to Controllability Limits is Key to

Disruption Prevention: Safe Vertical Conirollability > Prevents VDE's

Separate proximity control loop augments equilibrium/shape control

Compensates for disturbances to internal inductance, elongation

General proximity conirol scheme applicable to many controllability boundaries:
— Weak control action when far from limit, stronger as approach limit...

A &@& & A y
— vy _---= <~ vOe critical - o
= R .+ controllability limit
o o7 Seae”
9 / Y estimated
£
-+
% - «— Uncertainty
O

> fime
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ITER PCS Design Elements Provide Performance, Robustness, Low Disruptivity

Beyond First Plasma: Asynchronous Control for Disruption Avoidance
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What is exception handling?

O General definition from the ITER PCS glossary’ (i.e. event versus exception)

= An event is an extraordinary occurrence or a phenomenon that might be relevant for control. An
event is not an exception but can be considered a potential exception.

= An exception is an event requiring a change in the method of control.

O An event becomes an exception when its relevance is validated, i.e. if it is decided that the
extraordinary occurrence (the event) requires a change in the control method.

O An exception is the adaption of the control system either at local level, with a change in the behavior
of an individual PCS function, or a global coordinated action among different PCS functions

O Exception handling will change the control method, i.e. change control scheme, reference
waveforms, controller gains, diagnostic input, use of actuators, but nominal control will remain in
charge. Hence, nominal control requirements remain applicable through-out the exception handling
process.

[1] PCS glossary: IDM_D_3TDY3S

Peter de Vries — PCS exception handling — FDR for PBS47 PCS for First Plasma operation IDM: 3BX5KB Page 17
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Exception handling architecture: components

O Decomposition of exception handling derived from use cases [1][2]
= Event detection - Detect an event to which one may need to react.
» Filtering — Determine whether the event requires a change of control under the current context.
= Arbitration - Prioritize in the case of concurrent events.
» Handling — Determine the most appropriate (set of) action(s).

Active

Exceptions exceptions Handling

[1] Exception handling use cases: IDM_D_YRJ5KM
[2] Exception Handling architecture: IDM_D_YSW2GV

& Peter de Vries — PCS exception handling — FDR for PBS47 PCS for First Plasma operation IDM: 3BX5KB Page 18
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Exception Handling is Performed Globally at the Supervisor Level and

Locally at Support Function and Controller Level
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ITER PCS Will Support Several Decision Architectures for

Exception Handling and Asynchronous Disruption Avoidance

+ Finite State Machines Finite State Machines =& e
— States, Transition Logic, and Responses N R

- Behavior Trees S e s ) s
— Tree branching on conditionals, Responses
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ITER Exception Handling System Requires a Powerful Forecasting

Capability for Sufficient Look-Ahead

- System Health Projection:
— Monitors present health state
— PROJECTS to future health

 Faster-than-Realtime-Simulation:
— Projection of system evolution

* Realtime Stability/Controllability:
— ldentify boundaries

- Key integrated results:

— Proximity to conftrollability boundaries

— Quantified risks: pre-disruptive

events, disruptive state (DMS trigger)

Diln-D
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Several Kinds of Predictors are Needed for Disruption Management

Predict future STATE (plasma or plant system) under present control trajectory
— Faster-than-Real-Time-Simulation forecasting

Predict future STABILITY or CONTROLLABILITY (boundary proximities)
— Real-time stability/controllability projection (applied to FRTS results)

Predict specific exceptions and faults for EXCEPTION HANDLING
— System health projection (monitoring quality signals, infer from realtime data analysis)

Provide specific basis for TRIGGER OF EMERGENCY RESPONSES
— Shutdowns: rapid controlled, emergency “uncontrolled”

— Mitigation action preparatory to shutdown

— Define DMS scenario

— Fire DMS

- Y
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Exception Handling and Control is Possible Only If Predictors Are Designed to

Provide Information in Actionable Form

1. Must predict SPECIFIC pre-disruptive phenomena to enable control action:
— VDE, radiation limit, n#0 MHD stability/controllability, TM-stability profile state, system fault, etfc...

— “Disruptions” aren’t a single thing to predict!ill They're the end result of many different risky phenomena
which should THEMSELVES be predicted individudlly... (possible exception is a final “Disruption Alarm”)

2. Must provide a CONTINUOUS variable that quantifies proximity (& can GENERATE triggers):
— Vertical Controllability metric: e.g. AZmax; Tearing mode stability metric: Turco J-well depth
— Formal “Hazard” probability, quantified risk metric

3. Must be REAL-TIME CALCULABLE (control is real-time by definition...)

4. Must be linked to SPECIFIC CONTROL ACTIONS and provide SUFFICIENT LEAD TIME
— Predictor interpretability: must provide information on source of prediction and implied control action

5. Must be EXTRAPOLABLE to new device (ITER) control solution prior to operation:
— ITER control requirement: must validate shot prior fo execution...
— COULD dllow iterative improvement over time...

- Y
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Disruption Mitigation Function — Role of PCS/APS/CIS/DMS

NOTE: this scheme is —— signais

status
L] L] - —> <—
in flux... will likely be > { . APS l |
realigned with full 8 >
. 3 DMS ®
Investment Protection = Se"“e"Cellrrfgger Isfaws z
scheme now under S Cis LS |3
_. —
development... % . —
infector
APS = Advanced l riogers T“"”"’s é sequence gtenerator
. sequence storage
Protection SYStem DMS PIS ’ @@ DMS trigger generator
ltrigger Tstatus
Responsibilities OO0 - O

APS: DMS trigger, calculate sequence LSl el

CIS: execute sequence, DMS trigger on plant fault or other safety interlock

DMS: injector status, activate injectors, pre-pulse configuration (via CODAC)
ITER_D_T97WNG
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DMS Triggering Sequence lllustration

03 DMS event sequence

0.2 \ -
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3 T T T T T
o
o)
B 2 |
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1 T T T
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(®)]
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. >
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Vertical 5 Ny .
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DMS Triggering Sequence lllustration

DMS event sequence

0.3
- _02f ]
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Request Triggers T ]
0 r r r r
M Prédicte 3 _ _
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DMS Triggering Sequence lllustration

DMS event sequence

0.3
X “ ) 0.2 §
‘ Trigger Valve 1S 0.1
Request Triggers T ]
0 r r r r
Prédicte 3 _ L
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DMS Triggering Sequence lllustration

03 DMS event sequence
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DMS Triggering Sequence lllustration

===

DMS event sequence

0.3
X ~~
. ® 0.2 \ i
Trigger Valve 1S 0.1
Request Triggers T ]
0 r r r r
Prédicte 3 :
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DMS Triggering Sequence lllustration

DMS event sequence

0.3
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DMS Triggering Sequence lllustration

03 DMS event sequence

0.2

Trigger Valve 1S
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DMS Triggering Sequence lllustration

03 DMS event sequence

0.2

Trigger Valve 1S 0.1
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DMS Triggering Sequence lllustration

DMS event sequence
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DMS Triggering Sequence lllustration

DMS event sequence
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DMS Triggering Sequence lllustration

DMS event sequence
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DMS Triggering Sequence lllustration

DMS event sequence

0.3
X DMS status DMS status 0.0 >\ |
A Trigger Valve g’ 0.1
N Request Triggers T ]
nX 0 r r r r
M Prédicte 3 _ _
Ry . d Plasma J
Al x State seq:enc % 2t -
> - Status signal DMS 2 ]
= PCS: 2 REM failed 2
0 r r r r
Sequence # Delay < # REM Delay <
Idx TLM | TLM [ms] REM [ms] 3 L i i i
) )
2 /3 |/ 0 | 5 | 15 | 8
0 +2 (rep +18 %’ 2 ’
o
o aiver FoMTs 1 ' : g :
. 1 T T T
w [, DMS Trigger
Controllabilty | Regulation Termination >
£ 054 .
>
s 0 : : :
0 5 10 15 20 25 30
time [ms]
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Trigger
Request

Pr&dicte

d Plasma
state

sequenc

Triggers

Valve

e
- REM replacement sequence
- Firing counter continues...

Sequence # Delay < # REM Delay <
Idx TLM | TLM [ms] REM [ms]
1 5 0 5 20

nformation
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VvsC
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Alternate
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DMS Triggering Sequence lllustration

03 DMS event sequence

0.2 \ -

Trigger Valve 1S 0.1
Request Triggers T ]
0 r r r r L

Prédicte 3 :
d Plasma
state seq:enc % 2L 4
- DMS/Termination State = || |
- CIS Trigger to DMS (REM) £
0 r r r r r
Sequence # Delay < # REM Delay <
Idx TLM | TLM [ms] REM [ms] 3 L i i i L
1 5 0 5 20

Information
to other FSM's

1 T T T
v [ vora DMS Trigger
Controllabilty | Regulation Termination
(*2]
£ 0.5} §
>
vsC
Alternate
Operating
Scenaiio 0 - c c
0 5 10 15 20 25 30
time [ms]
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DMS Triggering Sequence lllustration

Trigger
Request

Pr&dicte

Triggers

Valve

y , d Plasma
A X state seq:enc

>,

Sequence # Delay < # REM Delay <

Idx TLM | TLM [ms] REM [ms]
1 5 0 5 20
|
3 | 3 | 0 [3+2(rep | 15+18

Information
to other FSM's

vsC
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Alternate
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Scenario
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DMS Triggering Sequence lllustration

===

Valve
Triggers

Trigger
Request

Pr&dicte
. d Plasma

state sequenc
X

>

Sequence #

# REM
Idx

1 5 0 5

Information erminatiol
to other FSM's State(s)...

DZ <Cwarn

DZ < Calarm

VSC
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Warning
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vsC
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DMS Trigger
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vs
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DZ > Cnom
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Developing the Remaining ITER PCS Solutions

Humphreys/1t IAEA-TM Disruptions/July 2020
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Candidate Approaches Are Under Development at Many Devices to

Qualify Needed Solutions for ITER in PFPO1-2 and Beyond

RAPTOR FRTS -
Felici (EPFL) -

TENEX

TCV hybrid controller emulator
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(Future) RT-equilibrium with
RIM | kinetic profiles from RAPTOR
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- 10&Anand (GA)
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New ITPA IOS-MDC Topical Groups Joint Activity on

“Control for Disruption-Free Operation”

Turco NTM
Jwell Metric

# of time slices
All IBS database

© Stable
© Unstable

* Multi-machine/lab effort driven by Joe
Snipes to coordinate 10S and MDC
toward control for disruption-free ops

* Long-term Goails:
Study scenarios with low disruptivity

Improve understanding of events
leading to disrupftive states

100
0
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o o o
@ @ < «
% of unstable points

Il stable
Il unstable
-©-Ratio of unstable/stable

(x 100)

Proximity
Control Scheme
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i i : Real-fime stability | Proximity Independent g
confrol for disruption-free operafion 5 e Controller: Control Algs: 10 3
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Near-term Goals:

— Initial focus on proximity control for
confinuous disruption prevention...
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Summary and Conclusions

« The ITER PCS plays a central role in preventing and managing ITER disruptions

« Key PCS functions for disruption management include:
— Shot validation through control simulation verification: mitigate human error
— Robust control algorithms: tolerate expected noise/disturbances
— Proximity control: prevent approach to disruptive states, confinuously minimize risk
— Effective Exception Handling: respond to system faults to avoid disruptive states
— FRTS Forecasting and effective predictors: avoid potential disrupfive states
— DMS triggering (maybe) and effective mitigation scenarios: mitigate effects

* Novel elements needed for ITER PCS are now subject of active research:
— Proximity control, controllability assessment/prediction, disruptivity risk assessment
— ITPA Joint Activity between IOS and MDC TG's: disruption-free operation

Dili-D
4 NATIONAL FUSION FACILITY

4 Humphreys/1t IAEA-TM Disruptions/July 2020



Additional Slide Material
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Control Solutions Act at Every Stage in Operating Space to

Prevent or Avoid

in case of fault) Disruptions

Solution must be:

A fully qualified suite of ITER/reactor -scalable
disruption prevention & avoidance control
tools for routine operation with quantifiable,
high confidence reliability

This is the domain of
=P control mathematics
informed by physics

Nominal ~ Try to up
scenario  perform.
A
Controlled Stab, Limit
Plasma | = "oemmmme=es -~ S\ A  — .
Parameter ' Return to .
(h B, 1, etc.) target if stable Original "~
Target ™, t
Control regimes: ®—0 >(3) > @ ®
Continuous  Proximity Active Temp. Lower Emergency
Control  Control Suppression Perform. Response
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ITER Plasma Contirol System Architecture and Functions Must Satisfy Many

Functional Requirements with Scalability to Future Needs

¥ Communication Concept

System Architecture (SA)

\ ¥ Functional Architecture

Wall conditioning and T removal (WC)

Axisymmetric Magnetic Control (AMC)
Kinetic Control (KC)
MHD and Error Field Control (MHD)

— Control Functions (CF) J _ _
/ Disruption and Runaway Electron Control (DRC)
PlasmaControl 1\ . ‘ : °
\\ KEvent detection and Exception handling (EH)

\ \ Actuator Management (AM)

\ | Basic Control Functionality (BC)

\ Support Functions (SF)o
\ Model Development (MD)
[ Code Development (CD)
{ Pulse Validation Simulator (VS)
\\ Real-time Simulator (RT)

\ Control Simulator (CS) |
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