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Big Updates for 2020:
For the people who know our research already
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1. ML-based plasma evolution predictor/controller running on DIII-D
2. Real-time kinetic EFIT is functional and being tested on DIII-D
3. Keras2c è Automatic NN to PCS code conversion functional
4. Real-time δW running at ~200 ms at DIII-D: Offline tests projecting to 

~20 ms is using GPU, RT-Δ′ in development
5. Dynamic Mode Decomposition gives good plasma evolution 

models
6. Big Highlight: RT-Adaptive ML proof-of-concept shown using 

reservoir learning. So fast ~20 ms that for ML profile predictor/ 
controller, we can update the ML online as new data comes in
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Portfolio Approach to Disruption Avoidance: 
1st Physics-Based + Data-Based RT Stability Analysis (Event Prediction)

• Physics-based approach are useful for predicting instabilities
– Good: Machine independent; Gives insight and possible solutions
– Bad: May need long analysis (not for real-time application) and may not predict all phenomena yet

• Data-based based (Machine-Learning {ML})approach: 
– Good predictions, harder to project and understand the reason

• We need a solutions portfolio to avoid disruptions at ITER and beyond
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Portfolio Approach to Disruption Avoidance: 
2nd RT Feedback Control with ML

• The only point of RT-prediction is to take action è Control
• DOE Fusion Energy Science report on “ML for Fusion” explains the path for ML for fusion control
• Event prediction + Evolution prediction è ML Control
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1. Automated Plasma Equilibrium from Diagnostics

2. Tearing and Disruption Prediction

3. Machine Learning Control for Disruption Avoidance

4. RT Adapting ML Prediction and Control
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Automatic kinetic EFIT workflow robustly generates quality equilibria

• The Consistent Automatic Kinetic 
Equilibria(CAKE) tool has been 
developed to produce 
kinetically constrained 
reconstructions with minimal 
human intervention

• CAKE has been able to 
robustly generate low 
force balance error 
equilibria that compares 
well with manual kinetic 
equilibrium.

• Preliminary work with DCON 
and STRIDE show CAKE 
outputs compares well in 
ideal MHD stability 
calculations.
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Electron and Ions: RT-Thomson and RT-CER constraints on the 
Current and Pressure (R. Shousa, D. Kaplan, D. Piglowski)

• Core CER channels already 
acquired 

• Edge CER chords for pedestal are 
added 

• RT-CER server/system system 
working. RT analysis running on 
DIII-D

• Thomson analysis + fitting

• Fast Ions – NN based prediction

Data

Real time profile fit
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Real-time Kinetic EFIT with new CER, Thomson (+MSE) constraints is running on 
DIII-D

R. Shousha with K. Erickson
F. Laggner, Z. Xing, J. Ferron

Example of pressure constraint 
contributions: Electron, Ion, Fast Ion

Example of pressure constraints used in 
equilibrium reconstruction
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Real-time Kinetic EFIT with new CER, Thomson (+MSE) constraints is running on 
DIII-D

EFITRT1

New Real-time 
MSE+CER+
Thomson 
EFITRT2

R. Shousha with K. Erickson
F. Laggner, Z. Xing, J. Ferron
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STRIDE: Real Time δW Calculations (A. Glasser, R. Conlin)

● Quadratic Lagrangian gives 
Linear Euler-Lagrange 
equation

● Linear E-L can be domain 
decomposed using state 
transition matrices

Easy parallelization → fast stability calculations 11



● Parallel calculation integrated into 
plasma control system (PCS) on 72 
core CPU

● Tested on DIII-D, Sept 2019 & June 
2020

● Achieved calculation times ~250ms
during steady state

● Further optimization to achieve 
<200ms

● Will be used for control Summer 2020

STRIDE: Real Time δW Calculations (A. Glasser, R. Conlin)
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● GPU implementation 
under development

● Projected to achieve 
~20ms calculation 
time

Parallel MatMul 
Reduction (projected)

Batched cuBLAS + new 
integration scheme 
(achieved)

Parallel field line 
integration 
(projected)

Batched cuFFT + 
custom kernels 
(projected)

Batched cuBLAS + 
custom kernels
(projected)

STRIDE GPU (R. Conlin)
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STRIDE: Delta-Prime Calculation (A. Glasser, R. Conlin)

Wvacuum q(1)

● E-L solution for 𝜹W (ideal stability) 
allow easy calculation of 𝚫’ 
(resistive stability)

● Directly solves BVP, no Galerkin 
projection / FEM
○ Robust, converges for all 

equilibria

● Extremely fast: <100ms (CPU only)

● Planned to incorporate into real 
time code summer 2020
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Disruptivity Threshold Gives a Choice Between Prediction 
Rate and False Positives



• Shot based prediction of 
instabilities and prediction time. 

• Bagging:~%90/3% for 600 ms.
%65/0 360 ms

• Tested Various ML and NNs

Tearability, predict tearing mode 
250ms before it happen. Enough 
time to control and avoid tearing

Tearibility: Sufficiently Early Tearing Modes Prediction 
May Allow Prevention

Prediction
time

Tearing
time
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2. Tearing and Disruption Prediction

3. Machine Learning Control for Disruption Avoidance

4. RT Adapting ML Prediction and Control



Real-time Disruption Prediction using Machine Learning (Kliejwegt, Fu)

• Developed and tested Machine Learning Algorithms to find the disruption time

• First tests are shown above. Correctly predicts flattop disruption with ~300 ms
warning and the ramp down disruption with >50 ms warning
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• Developed and tested ML algorithm
to find the disruption time.

• Use it to change the off-normal
response:

è New ramp down sequence of the
plasma (feedforward) when disruption
is expected

First Feedforward Control (Rampdown Scenario Change), Based on 
RT Disruption Prediction Tested on DIII-D (Fu, Barr)
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Disruption Avoidance Can be Achieved by Predicting 
Instabilities with ML

1. Predict instability (tearing mode) 
with ML 

2. Instability (tearing) occurs

3. Predict disruption with ML

4. Disruption occurs



Lock mode signal

Tearability
è constant

NBI Power

Machine Learning Control at DIII-D:
ML Predict Stability (Tearing), Optimize Performance  
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Stop Disruption: Ramp Down

Optimal Operation Point

1. Predict Instability using ML
2. Instability Starts
3. Disruption Occurs 

• Instability prediction gives lots more time than disruption prediction
• Enough time to control the plasma and avoid shutdown
• Choose a stability level to operate at (say %1)
• Then Machine Learning Controls the NBI/ECH for highest 

performance at that stability level
• PCS Algorithm (Kolemen, Fu, Boyer, Erickson) 
• Fu et al. PoP 2020 (Scilight - Highlighted paper)

No instability

Beam Power Controlled with ML
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Neural Network to predict plasma transport (J. Abbate, R. Conlin)

● Given state (temperature, 
density, rotation, etc) at 
time t, and actuator inputs 
(NBI, Ip, gas) predict state 
an energy confinement time 
into future

(Abbate, Conlin, NF, submitted)

Model Architecture
● Convolutional layers to capture 

gradients of profiles for transport 
(cf. natural response) (Szegedy, 2015)

● Recurrent layers to capture time 
history of actuators (cf. forced 
response) (Gers, 1999)

u(t) : 
● Pinjected
● Tinjected
● Ip
● 〈ne〉target

x(t) :
● Te
● ne
● q
● Ω
● P
● Shape
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Using NN Profile Predictor for Control (J. Abbate, R. Conlin)

● Real time predictions allows predictive 
control

● Simulate different actions in real time

● Take the action to minimize cost 
function:

● u : control action
● x : state
● w : weights

(Abbate, Conlin, NF, submitted) 23



ML Predictions qualitatively accurate (J. Abbate, R. Conlin)

● Trained on ~6,000 shots from DIII-
D

− ~200,000 timesteps

● Predictions generally accurate 
over wide range of plasma 
states

● Occasional noise in predictions 
can be mitigated by 
smoothing/post processing

(Abbate, Conlin, NF, submitted) 24



ML prediction captures dominant modes (J. Abbate, R. 
Conlin)

PCA Modes of profiles

Good agreement in mean value 
and amplitude of first PCA mode

(Abbate, Conlin, NF, submitted)



Developed Keras2c to run NN in real time (R. Conlin)

Script/Library for converting Keras neural 
nets to C functions

● Designed for simplicity and real time 
applications

● Core functionality only ~1300 lines

● Generates self-contained C function, 
no external dependencies

● Supports full range of operations & 
architectures

● Fully automated conversion & testing

● Tested on DIII-D for profile prediction 
& disruption prediction w/ FRNN 
(Tang)

(Conlin, In Review) 26
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ECE #180718
Dominant Mode Decomposition and Eigenvalues

DMD

System Identification for Evolution Dynamics: 
Dynamic Mode Decomposition Applied to Diagnostics (L. Palacios)

Eigenvalues

• Extraction of dominant 
spatio-temporal modes

• Identification of systems 
(full or reduced) in state-
space 

• è Allow model for control

DMD 𝒙!"# = 𝑨𝒙! + 𝑩𝒖!



Machine Learning Based Profile Control 
(J Abbate, R. Conlin, J. Butt)

● ML Algorithms trained on the profiles from 
the DIII-D database (thousands of shots)

● Initial control tests on DIIID started, 
calculation times <1ms (Te profile)

● ML Control: Use ML to adjust beams and 
current to achieve desired profiles
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Reservoir Computing Network (A. Jalalvand)

A recurrent neural network with random and sparsely connected early layers.
Only the last layer is trained using linear regression.

Specifications of RCN:
• Projects the inputs to a random very high-dimensional space.
• Ability to process temporal information (time-series data analysis)
• Much faster and easier training procedure compared to DNNs.
o LSTM: 5 hours on GPU
o RCN (with comparable performance): less than 5 minutes on CPU
o Easy & fast training makes parallel training and “in-situ” model adaptation possible.

• Successful application on complex data such as speech, image, radar.
• In progress (since March 2020): Plasma profile and tearing mode prediction

Ghent University - Belgium



Reservoir Computing Network (A. Jalalvand) Ghent University - Belgium

Parallel Training: The most expensive part of the training is calculating the reservoir 
states for the training samples. This part can be run for each sample in parallel. 

Initialize the random 
weights

Accumulate the 
reservoir states

res. stat. of
sample 1

res. stat. of
sample 2

res. stat. of
sample N...

Calculate the 
reservoir states 
for the training 
samples 

Calculate the 
readout weights 
(Linear regression)



Reservoir Computing Network (A. Jalalvand) Ghent University - Belgium

Adaptation: By storing the accumulated reservoir states from the training set, we can 
update it with the validation states and update the readout weights.   

For each test sample i

Add the reservoir states to the accumulated 
states

Calculate the reservoir states for
test sample i

update the readout 
weights 



Reservoir Computing Network (A. Jalalvand) Ghent University - Belgium

To be submitted:

Real-Time and Adaptive Reservoir Computing for Fusion Plasma Applications
A. Jalalvand, J. Abbate, R. Conlin, G. Verdoolaege, and E. Kolemen

● 4000 Training shots (~90 hours) and 500 Test shots
● Training time on full training set 55 sec on Core i7 CPU.
● Online adaptation every 500ms: 96ms per adaptation



Backup
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Real-Time Tearing Mode Prediction and Avoidance (L. Palacios, E. 
Kolemen)

● New signals in dataset
○ More than 200 signals
○ 5 and 500 kHz ECE signals (40 signals each)
○ Other signals: Thompson, Magnetics, CERREAL and MSE

● Phased LSTM for sensor fusion and arbitrary sampling rates (Palacios, 
Kolemen)
○ Proper integration of signals from diverse range of sensors, each one of them having 

its own sampling rate
● Reservoir Computing Networks (RCN) (Jalalvand, Kolemen)

○ Time-series data analysis using RCN, a variation of recurrent neural networks
● Dynamic Mode Decomposition and Sparse Identification of Nonlinear 

Systems (Palacios, Kolemen)
○ Data-driven system identification solutions based on linear algebra and nonlinear 

dynamics
○ Also suitable for diagnostics and control 36


