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Motivation &\;we W

In DEMO (DEMOnstration fusion power plant) allowed disruptions per year is
below 1

Need to develop a scenario
— Provides the required electrical output
— With margins inside operational and physics limits

Need to control scenario in case of
— Standard plasma development (plasma current ramp-up/down, L-H-L transition, etc.)
— An unexpected event (e.g. impurity, loss of an actuator)

— Anomaly of plasma parameters is detected (P4, li, n.)

In case of an event - control system has to either recover the nominal plasma
parameter or shutdown the plasma in a safe way

For dimensioning the control system and designing the plasma scenario
— Work must be carried out in simulations
— So hardware, physics and knowledge limits can be clearly assessed and taken into account
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Outline U W

= Fenix — tokamak flight simulator for physics and control studies and
preparation and validation of tokamak plasma experiment

= Events that can lead to a disruption
= Results of the simulations
= Conclusions and outlook




Fenix

* A tokamak flight-simulator [1,2,3]
— Plasma model - ASTRA (1-D transport) [4]

— SPIDER (2-D coil current and equilibrium
solver) [5]

— models @

* Edge

ASDEX
@pgrade W

Publish/Subscribe I | setup Publish/Subscribe I

e Sawtooth

° L_ H Controllers

* pedestal

* SOL/divertor particle balance and
exhaust model [6]

Actuators

— control system model (MATLAB/Simulink)
 actuators and diagnostics

e Simulates

TimeSeriesGenerator

1
25

=ventGenerator

— ASDEX Upgrade entire discharge with Transport
magnetic and kinetic control

— DEMO kinetic control (fusion power,
separatrix power, density, divertor heat
loads)

— DEMO flattop phase

Fenix_DE_MO

Scopes DataStorage

* ITER Plasma Control System Simulation Platform (PCSSP) compliant
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DEMO overview

* EU DEMO 2019 standard ELMy H-mode [7]
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Diagnostics coverage: ITER vs. DEMO [8]

ASDEX
Upgrade

Control quantity Operational DEMO Diagnostics ITER Diagnostics Actuators +
limits interactions
Plasma (edge) density limit Reflectometry interferometer/polarimeter pellet injection (fuel)

density

IR polarimetry/interferometry
Plasma radiation

gas injection
pumping system

Plasma radiation,
impurity mixture, Zg

radiation limit
LH threshold

Spectroscopy+radiation meas.
UIoop

bolometry: radiated power,
Ha, vis. spectroscopy, VUV, X-ray
(core + divertor), CXRS, BES

impurity gas injection
auxiliary heating

Fusion power

wall loads (FW
and div.)
LH threshold

Neutron diagnostics
FW/blanket and div. power (for
calibration only)

diamagmetic loop: plasma energy,
neutron flux monitors and cameras,
neutron spectrometer: fuel ratio,
neutral particle analyzer: fuel ratio,
D/T influx: Ha, vis. spectroscopy

pellet injection (fuel)
impurity gas injection
auxiliary heating

Divertor detachment
and heat flux control

divertor wall loads
LH threshold

Spectroscopy+radiation meas.
Thermography
Divertor thermo-currents

ELMs

Target overheat

IR thermography, VIS/IR imaging,
pressure gauges, residual gas
analysers, Langmuir probes

gas injection
(impurities + fuel)
pellet injection (fuel)
PF coils, pumps

Reflectometry, ECE

Gas pressure in main
chamber

Legend:

Te, ne profiles

Ti profile

Current profile

Plasma rotation

DEMO

» Applicable with restrictions
(e.g. resolution, sacrificial)

Ha, vis. spectroscopy

ELM pellet inj,
ITER: ELM ctr. coils

pressure gauges

gas injection, pumps

» Usable/foreseen for DEMO
* Big issues/not feasible in

Thomson scattering, EC
ECE, reflectometry

X-ray

MSE, polarimetry EC, NBI
X-ray, CXRS NBI
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Elements of the kinetic control

- 2GW
— diagnostic — neutron diagnostic

[ ASDEX
\Epgrade

Fusion power, P, . - target controlled via core ECRH/ICRH/NBI heating

— central heating also taking care of W control during ramp-up

Electron density, n_ - target via pellets (pedestal top Greenwald fraction) & gas

puffing (deuterium tritium) reinjected mixture to the midplane

— nPedton(GW) < 1

— diagnostic — infrared polarimetry, reflectometry, interferometry

— P, >1.2P,

sep

Separatrix power, P, and instability control - via Xe puffing and edge ECRH

— diagnostic — spectroscopy, radiation measurement, loop voltage

— Fully detached (T, <5 eV)

Divertor temperature (or power), t,,, or P, = divertor Ar (Kr) puffing

— diagnostic — divertor thermo-currents, spectroscopy

NTM control - ECCD at the g=2 or q=3/2 location

— Pre-emptive stabilisation or actively controlled (up to 50 MW of ECRH necessary)

— diagnostic — ECE, magnetics?
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Causes for disruptions in DEMO

* During different phases of the discharge:
— ramp-up: breakdown, variation of internal inductance, /i, (avoid vertical displacement event - VDE), L-

H transition
flat-top: burn control, detachment, keep the plasma inside limits
ramp-down: li control (avoid VDE), H-L transition

* During the flat top phase:

Sawteeth: core events, not dramatic per se, but can trigger NTMs

Impurity accumulation: not dramatic in a low-collisionality hot plasma
NTMs: need to be controlled or pre-emptively avoided

Pedestal events: ELMs (ELM-free scenario or very small), radiation anomalies
Density limit: keep density below limits at pedestal top AND separatrix

Loss of detachment: avoid divertor damage

* Technical issues

13.7.2020

Failure of actuators: need redundancy as much as possible
Failure of diagnostics: strategy to detect it and stop plasma safely
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DEMO scenario can be prone to problems &\;w W

Close to the Greenwald limit at the edge - need to understand Greenwald limit
physics [9]

Radiative instability (impurity event, detachment control) due to SOL cooling
— Edge sensitive due to presence of Xe and Ar

— Operation close to H-L transition

— Do we have enough heating power to prevent it [10]?

— Do we have enough time to detect such an event and react on it?

Detachment

— T4, control - too late to protect divertor once attached as gas puff reaction can take seconds

— Ar feedback pulses could cause density to go over limit - use feed-forward strategy with feedback
on a general performance quantity and feedback on an event

— Spectroscopic recombination - quantifying "detachment quality” - ongoing investigation of its
feasibility

Large sawtooth radius prone to NTM triggering - pre-emptive strategy

— Detection and location

— Speed of mirror

— ECRH power availability
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What can Fenix address

* Models of physics, actuators, diagnostics and control
— Physics — different models (e.g. L-H, pedestal, transport etc.)
— Actuators — delays, necessary power, limits
— Diagnostics — noise, delays
— Control — different control strategies

* Scenario

— Different scenarios avoiding physics and machine limits
— Controllability of scenario

* Event handling in case of an event

— Keep plasma running and bring plasma back to the nominal parameters
— Safely terminate down
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| ASDEX
Reference control case &Vmw W

* Fusion power controlled with NBI (via ion heating) ~ 30 MW

* Pedestal top density controlled with pellets
* Separatrix power controlled from above with midplane xenon puff
* Each small spike corresponds to a pellet

* Realistic pellet success 90 %

= 2020
— Based on AUG pellet system % 2000 h_‘*"r'gf m-i.""""nv--r-"-“‘-' i _.._,T.‘._.l._,_.,._.."_"....m.w‘. ,-',-”.“"“,,-."
I " 1980 val
* P;, oscillations < 50 MW 2% 1960 | . . . .
0 20 40 60 80 100

— No problem for the blanket

. =z 407
— No problem for electric s MMM%
2 5 mewm i
2I0 4I 1 1 |

production as energy is stored
in water heat capacity o~ 30

0

0 60 80 100

— Small oscillations do not cause

| . a 0.95F
arge separatrix power " ~ m—
fluctuations G o 0.9 val tf
0
% 180 -
= 160 —ref 4
val

13.7.2020 F. Janky 11



Loss of core heating system

* NBI heating loss for 10 s

* Fusion and separatrix power drops

* Separatrix power drop is compensated by decreasing xenon puff

* After 10 s NBI beam is switched on and plasma recovers

* How long the NBI drop can

[ ASDEX
\Epgrade

be? % 2000 pomaan ¥ rmﬂn- LR e i ref
— Further detailed studies must HE 1800 | \\B»// val
. o | | | | | |
be carried out 40 5C 0 70 80 90 100
— Depends on core radiation = 507 NBI
— Depends on enrichment factors Loss cmd
of core and edge impurities 2 0
o | | | | |
— Depends on L-H model 40 50 60 70 80 90 100
2S00 —
= m s refq-
%150_w W* T N ¥ T T T val
D.m 100 ! ! ! ! ! |
= 4 50 60 70 80 90 100
° 3T
— 2L cmd
CO
=2
QJ 0 | | | | | |
X 40 50 60 70 80 90 100
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Unexpected radiation from W influx

[ ASDEX
Upgrade

* Tungsten influx for from 1e19 to 2.2e19 particles/seconds (3 mg, 6 mg, 6 mg, 6.6 mg)

Separatrix power controlled by Xe puff from “top” Psep (ref) = 160 MW

E.g. Tungsten flake falling from the upper tiles or erosion from divertor

A .l"“ill\“ y PN \‘I“h ATk A,

* Heuristic finding 6.6 mg = 2000 fi—ref gy T I
. = 1950
— W puff at the separatrix (model) 2
2 1900 | ‘ . ‘
— No rocketing effect 0 50 100 150 200
W40
* Technical an ntrol S| [—event
echnical a d. control aspects to 5 207 3me 6. mg 6 mg 6.6 mg
avoid disruptions o | ‘ {
— Pipes length = % 50 100 150 200
— Diagnostic latencies s 00—
— Control of pumping speed and ED_IOO H——val
pumping impurities is not possible o 5 o , | . L-mod |
— Stop injecting xenon is slow o >0 100 150 200
g s00| =2 FJ
300 . ) .
ﬂ_‘— {\WV“H [\W N»lh\“"‘\” !
0 50 100 150 200
22l —cmg
0 50 100 150 200
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Controlled tungsten radiation event with ECRH \ b W

» Tungsten influx for from 1e19 to 50e19 particles/seconds (3 mg to 6.6 mg, 3 mg to
15 mg)

— 100
= —1) NBI cmd
* 1) Psep controlled only from =, soj| 2 Mend
“top” a® " R
0 50 100 150 200
— Xe puff, P, target = 160 MW W50
— Max 6 mg of tungsten & | Devent 6 mgvs 9 mg
E 2) event
* 2) Psep control as 1) plus g ) | |

— Xe puff, P, target = 160 MW 0 50 100 150 200

N

o

o
1

— Max ECRH power = 100 MW g o —ref
— ECRH @ ry, 0.8 (close NTM =100 e
location) o’ )
— Py, target = 140 [MW] o0
— Max 9 mg of tungsten g a00| 2%
— Surviving ~ 50 % bigger tungsten 300},
influx " 200
“o
4 —

—1) cmd
—2) cmd

50 100 150 200

o

Xe [p/s 1e19
o N
3
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Current density and T, profile tungsten case analysis \ D W

* Comparison of two cases with and time after W puff t = 0.01 5
without ECRH control < —
303 with EC
— 6.6 mg vs 9 mg of tungsten s
— 0 MW ECRH vs 50 MW of ECRH at ry = 0.8 if I S e
Peep < 140 MW
— Py, controlled with xenon puff if P, > 160 <
MW in both cases X ho £C
|_“-' with EC
- PLH = 130 MW 0 * . * * :
0.7 0.75 0.8 0.85 0.9 0.95
- Psep =Pt Pax = Prag— dw/dt g
o Inforeseen P, diagnostic there is missing =]
plasma thermal stored energy derivative = s
term & ©  withEC
. o’ 0 : : : : : : '
o Itis advantage for control 0 0.5 1 15 2 2.5 3 35
_ 200 3
; . no —
E 100} ‘g‘ witrE\Cf;C
i Py
ﬂ.m 0 R . . R . ] }
0 0.5 1 1.5 2 2.5 3 a5
. 500
2
= # &0 np EC
B < with EC
[ 0 ) ) ) ) ) ] )
0 0.5 1 1.5 2 25 3 35

tis]
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* As long as the plasma stays in H-mode

— Edge perturbations do not cause substantial deformations to the current and temperature
profiles

— Thus recovering the plasma without leading to a disruption

* If the plasma suddenly drops into L-mode due to the edge cooling
— Radiated power strongly increases,
— The current profile forms a strong gradient which could lead to the appearance of a disruptive
MHD mode
* Final message: the kinetic control has to be designed such as to
— Maintain the plasma into H-mode at all times during flattop

— Similarly, the wall has to be designed to avoid spurious material entering into the plasma

— If an anomaly is detected, plasma must be safely driven into L-mode before disruption, in case the
anomaly is predicted to not be controllable in H-mode
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Detachment control strategie

S

| ASDEX
upgrade
-

— 2200
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° - hi
220e19 Ar p/s constant flow Problem: high Ar puff can
— create a MARFE and it can lead to
lval 150 d q radiation collapse
Rea. \r’]a ues ? >0 dependon — increase the separatrix density above
enrichment: the density limit and lead to disruption
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NTM control [9]

ASDEX
bpgrade W

 Successful stabilisation of an NTM (2,1) mode using < 20 MW of ECRH
* Gaussian noise 0.0009 m?, detection delays 50 ms, beam speed ~ 5 cm/s

— No beam broadening

Island width
0.2 ——noisy size
'E il Wt bk | ——actual size
AN I | AR I
e ] { I
- 0.1 | AN
% | | i | I |
-E 0l Lt i | ‘ .I||;|,| LLLEY ‘
-0.1 | | | |
80 90 100 110
time [s]
Island position
0.8 - .
c0.7- M VM*’M el
Q w-"‘m
= ™
30.6-
o ——island position
——beam position
0.5 | | I |
80 90 100 110
time [s]
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Conclusions and plans &\juw W

Conclusions

* Fenix adaptation for DEMO can address control problems related to
— Scenario physics limits
— Operation (diagnostics, actuators) limits
— Unwanted events

— Simulations presented in this work show that we can quantify how much anomalous
edge radiation can be tolerated giving the cap in available auxiliary power

— We can also provide requirements on diagnostics (accuracy of P, measurement)
and actuators (pellet, heating) to minimize plasma parameters excursions around
nominal values

* Both the scenario (engineering parameters) and the actuators/diagnostics
requirements can be tailored accordingly

* Inclusion of density limit physics and tearing mode physics trigger will provide
essential push in ability to predict the scenario control strategy

Current development
* Coupling to a CREATE-based controller to tackle DEMO kinetic and magnetic control
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