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Plasma pushed close to operational limits often leads to

instabilities onset or conirol faults: unintentional disruptions

« Disruptions related to peak plasma performances:
higher stored energy, longer confinement times...

- Real-time prediction and avoidance, with
mitigation, mandatory when scaling to reactor
sizes and forces.

View from visible camera of disruption
on Alcator C-Mod.
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Statistical studies show complex chains of events:
disruption precursors
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VDE

Disruptions as final loss of control:
successful precursors identification
can inform plasma controllers on
proper actuators.
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Active monitoring and prediction of soft/hard limits

nhecessary to inform fransition across ops boundaries

Continuous Asynchronous Courtesy of J. Barr
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Proximity to stability boundaries
need to be actively controlled:
different conirol regimes
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Interpretable ML models for disruption prediction useful

resources to identify in real-tfime stability boundaries
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On DIlI-D and EAST, the

Disruption Prediction via Random Forest
algorithm (DPRF) computes disrupftivity
and interprets its drivers in real-time.

On KSTAR, similar exploration through
Random Forest.

JT-60U: Sparse Modeling by Exhaustive
Search and Support Vector Machine.
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« Overview Of Interpretable Algorithms Across Devices
_ Deep Learning
DIlI-D DPRE
Survival Analysis
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Deep Learning extracts general representations of

disruptive behavior across devices

J.X. Zhu et al, YA new Deep Learning architecture for general disruption prediction across tokamaks”, this meeting

«  Numerical experiments with aggregated DIII-D, C-Mod, and EAST data show '@at&rﬂ
DL learns disruptive characteristics: device-independent knowledge. ym
« Non disruptive data results device-specific, not improving performances. WN!!,!;E

- Limited disruptive data from target device still needed for prediction, as well as @
all available non-disruptive data.
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Fusion Recurrent Neural Network (FRNN) with 0-D scalar

inputs installed in DIlI-D control system (PCS)

FRNN Sensitivity Study — shot 164582
FRNN Long Short-term Memory block rr— ?
implemented in DIII-D PCS.

J. Kates-Harbeck, et al., Nature (2019)
«  Computing time < 2ms for real-fime eval.

plasma current error

internal inductance

Locked mode amplitude

« Associated actuator response studies in Stoed esieray
progress.
q95 safety factor
Normalized Beta
FRNN heat map shows disruption score Plasma density

af alarm fime most sensitive to
radiated core power and q95.

Radiated Power Core

Radiated Power Edge

2.5 1 —— FRNN disruption score
W. Tang ef al., accepted 2020 IAEA FEC paper TH/7-1Ra B | oo Alarm threshold ;* J;\L-\,,W_—_.J
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DPRF supervised binary classification algorithm:

identify transition disruptive — disruptive phases

1.5 Tr0n§|Tlon fime

D'B.E 1.0 1.5
l

» Fixed fime for fransition from safe to disruptive operational space. Alaior
« Training set thousands of discharges, agnostic to disruption type.  c-mod

2.0

DPRF is based on the
Random Forest ensemble

algorithm — collection of
decision frees: ﬁiﬁ

Y
b AN
Y

Provides metrics of
interpretability.

- Offline cross-machine investigation 0-D features (flattop datq).

C. Rea and R.S. Granetz, Fus. Science Tech. 74 (2018)
C. Rea ef al., Plasma Phys. Control. Fusion 60 (2018
C. Rea ef al., Nucl. Fusion 59 (2019)

K. Montes, C. Rea et al., Nucl. Fusion 59 (2019)

— DIlI-D DPRF 2.0
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DPRF 2.0: o detect earlier disruptive precursors,

feature engineering and dimensionality reduction

- 1D/2D profile information compressed
info peaking factors.

«  Profile diagnostics mapped onto flux
surfaces or core / divertor region:s.

Peaking factors are interpretable,
easy to calculate in real-time

A. Pau et al., IEEE TPS, 46 (2018)

A. Pau et al., Nucl. Fusion 59 (2019)

C. Req, K.J. Montes, A. Pau, R.S. Granetz, O. Sauter,

“Progress Towards Interpretable Machine Learning-based
Disruption Predictors Across Tokamaks”, Fus. Science Tech. (2020)
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DPRF 2.0: improved label classification by detecting

transition between specific operational boundaries

*  First disruptive precursors manually identified for hundreds of discharges —
Transition into unstable operational space: scenario detection.

First Precursors (Manual Analysis)

m L ocked Mode
m RAD/UFO
= Unclear
| = MARFE
» m Heating off
=" LOQ
m Operational
m [ ON
m Other

DIlI-D

NATIONAL FUSION FACILITY
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ML algorithms: training composition
can skew the sensitivity of the
model towards certain scenarios.

Need for (automated)
identification of disruption causes.

K. Montes et al, *Accelerating Disruption Database
Studies with Semi-Supervised Learning”, this meeting

S. Sabbagh et al, “Progress on Tokamak Disruption

Event Characterization and Forecasting Research and
Expansion to Real-Time Application”, this meeting
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DIlI-D DPRF 2.0 - peaking factors added to 0-D inputs

Feature contributions to explain disruptivity drivers

Decision paths in DPRF trees provide average measures of explainability
n/ng by assigning (x) contributions to input features during inference.
Winha ; — ] ] . (see example in addifional slides)
5 Access to disruptivity drivers in real-time:
Uy = Lyrog)/Iorog monitoring of unstable plasma features
2 1.6 . . . . 1.00
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DPRF 2.0 shows real-time feature contribution computation

(~ 200 ps) and successful ONFR* integration

C. Rea et al. IAEA FEC 2020 180805 180808
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Closed the loop in the PCS by triggering Assessed peaking factors as relevant
early rapid shutdown, MGI, and ECH metrics in scenario ~ ITER baseline
Dil-D *Off-Normal Fault Response — Asynchronous and Emergency response.
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Proximity Controller:
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In progress: include DPRF 2.0 in DIlI-D proximity control

architecture to regulate stability and avoidance

J. Barr, “Control Solutions Supporting Disruption
Free Operation on DIII-D and EAST”, this meeting

Disruptivity as general proximity
of current plasma state to
unstable ops space

Dil-D
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Feature contributions can be
mapped onto controllable plasma
parameters to regulate stability
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DPRF disruptivity analogous to current probability

of membership to disruptive class

1140226013

Alcator
- )c%:od Alcator C-Mod data used as

proof of concept to combine
DPRF with survival analysis.

The disruptivity P, can be used to:

» Predict the future probability of
plasma survival S(t + At | t) [1]
or

 Model the instantaneous hazard [2,3]
h=dInS /dt
to be used as probability generator.

[1] RA Tinguely et al 2019 PPCF 61
[2] KEJ Olofsson et al 2018 PPCF 60
[3] KEJ Olofsson et al 2018 FED 146 C. Rea | 1stIAEA TM PDM | July 2020

S(t+At|t)

h(t+At|t) [1/s]




Hazard function modeling connects dynamical systems

and risk-aware control design by probability generation

Survival/funcﬁon for future event Dynamical system: a(x) drift, b(x) diffusion

/

Pr[T >t/ Xy =a] =E {exp (— /Ot d,Th(X,T)) } s.t.dX = a(X)dt + b(X)dW

\

ML-enabled direct hazard function h(x)

- Dynamical system (a, b) either by ML or first principles or a combination; plasma state x.

+ Dependence on future actuation makes future event probability conditional: confrol design.
* Hazard function directly corresponds to (probabilistically calibrated) operational boundaries.
- Underutilized approach: only tfearing mode events analyzed (in DIlI-D) to date.

KEJ Olofsson et al 2018 PPCF 60
16 M!LQ KEJ Olofsson et al 2018 FED 146 C. Rea | 15t IAEATM PDM | July 2020



« Overview Of Interpretable Algorithms Across Devices

— EAST DPRF
— KSTAR RF
— JT-60U SVM
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DPRF installed in EAST PCS: feature contributions and
disruptivity calculated in real-time in < 200 us
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C. Rea et al. IAEA FEC 2020
W. Hu, C. Rea et al., in preparation 2020

DPRF trained using
400 high-density (ne/nG > 0.8)
disruptions and 400 non-
disruptive data.

Tested in real-time on
172 disruptive and 456 non-
disruptive discharges.

Tested in closed-loop to fire
mitigation system.
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EAST DPRF: disruptivity threshold of 0.8 guarantees

SA ~89% and FA ~9% and alarm > 1 s

«  SA:successful alarm, disruption

detected in advance;
- FA: false alarm, alarm triggered
for non-disruptive discharge.
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Development of data-driven disruption prediction system

using random forest method in KSTAR

= QObject
Development of disruption prediction system based on data-driven machine-
learning methodology using KSTAR database =
= Database N. RI
« Total 1054 disruption shots from 2015 1o 2018 KSTAR campaign
« Label (disruptive / non-disruptive) based on 40 ms prior to thermal quench

(40 ms: required fime to activate disruption mitigation system, such as MGl or
SPI)

« Dataset: |, oror fow: OBim: Zo, Aos, Vioop, ANA [;

" Training result B 14766 (0.463) 1533 (0.048)
» Random forest, binary classification g et ' '
«  Confusion matrix: g
j=  Disruptive 2033 (0.064) 13531 (0.425)
Accuracy on non-disruptive class: 90.6% SRt s o

Accuracy on disruptive class: 86.7%

Predicted label
20 J. Lee et al., private communications C. Rea | 1stIAEA TM PDM | July 2020




High-beta disruption prediction in JT-60U

through exhaustive search and SVM
* Feature extraction via Sparse Modeling — K-sparse Exhaustive Search

Time change of PSR (solid line) and FAR (dashed line) Weight Diagram

s W T +b Top combinafion:
- e a3 | &
o 3 -...é%f I Bp, qos, K, fow T
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| ; -

100

8

Results in PSR ~ 95%,
=FE ""’iff:;: W FAR ~ 15% at 30 ms
+nj—i o before the disruption.
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10 A

non-disruptive region

Judged as disruptive.
- Binary classification through linear Support Vector Machine (SVM)

fo extract decision function for the boundary: f(z) =w-x + b
disruptive region

21 T.Yokoyama et al., Fus. Eng. Design 140 (2019) 67-80 C. Rea | 1stIAEA TM PDM | July 2020



High-beta disruption prediction in JT-60U

through exhaustive search and SVM

-« Decision func’r.ion obtained by re’rrgiping the Foo(@) = 7453539, ~8.20, 740 £4.50—0.120
SVM, after taking the log of the fraining data:  Jexp = € P 4o5 GW i

Decision function parametrized from
__ FEvaluationofdecision function ______ top combination of features enables
disruption likelihood estimate
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T. Yokoyama et al., Data-driven study of high-beta disruption prediction in JT-60U using exhaustive search, AAPPS 2019

T. Yokoyama et al., Fus. Eng. Design 140 (2019) 67-80
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«  Summary And Conclusions
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More than 20 years of research in disruption prediction

have produced voluminous literature

Device References (incomplete list)

ADITYA Sengupta and Ranjan 2000 NF 40
Sengupta and Ranjan 2001 NF 41

_ Rea et al 2018 PPCF 60
A|CCITOI’ C MOd Montes et al 2019 NF 59

Tinguely et al 2019 PPCF 61

ASDEX- Pautasso et al 2002 NF 42
S U Windsor et al 2005 NF 45
Aledda et al 2015 FED 96-97

D|||-D Wroblewski et al 1997 NF 37 Montes et al 2019 NF 59
Rea and Granetz 2018 FST 74 | Rea et al 2019 NF 59
Rea et al 2018 PPCF 60 Kates-Harbeck et al 2019 Nature 568
EAST Montes et al 2019 NF 59
JET Windsor et al 2005 NF 45 Murari et al 2009 NF 49 Cannas et al 2014 PPCF 56 | Kates-Harbeck et al 2019
Cannas et al 2004 NF 44 Ratta’ et al 2010 NF 50 Ratta’' et al 2014 PPCF 56 Nature 568
Cannas et al 2007 FED 82 De Vries et al 2011 NF 51 | Murari et al 2018 NF 58
Murari et al 2008 NF 48 Vegaetal2013FED 88 | Pau et al 2018 IEEETPS 46 | Pau et al 2019 NF 59
JT-éOU Yoshino 2003 NF 43

Yoshino 2005 NF 45
Yokoyama et al. 2019 FED 140

_ Wang et al 2016 PPCF 58
J-TEXT Zheng et al 2018 NF 58

o4 NSTX Gerhardt et al 2013 PPCF 60




Data-driven predictors to be adopted as last line of

defense for disruption mitigation but...

- Interpretable output combined with control algorithms can inform the PCS
on disruption precursors and be employed in avoidance schemes.

—  Frameworks exist to extract plasma future survival — Tinguely et al.
or instantaneous hazard (as probability generator) for instabilities — Olofsson ef al.

 DPRF provides explainable predictions — tested on C-Mod, EAST, DIII-D:

— Works as real-time scenario detector (DIlI-D, EAST).
— To be integrated with proximity controller for continuous avoidance (DlII-D).

* Analogous efforts ongoing at international facilities:

— J. Lee and J. Kim @ KSTAR — A. Pau and others @ JET, TCV, AUG;
— T. Yokoyama @ JT-60U; — G. Dong et al. @ DIlI-D.

« Ongoing work to design predictor for ITER:

— Few ITER disruptions might still be needed to design effective data-driven solutions.

— J.X. Zhu ef al.
— J. Kates-Harbeck et al.

I N .
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Decision paths in DPRF frees provide local measures of

explainability through information gain and loss

Feature vector example

Vleop @95 n/nG n.equal.l other prediction
normalised features

-4.9 3.2  0.13 0.0002 ~ 0.65

Feature contribution breakdown

Prediction ~ 0.651 ~ 0. 943 (bias term)

erro_{rac <- -0.0625 n_qﬂ_1_nun£imd<- n.m\' +'(j 003, . (gain, Vloop)
[' £ ] [ £ J . {0010 (gun, 095
value = [0.2961, 0.7039] (

value = [0.4006, 0.5994]
ciass - dienuptive loss, n/nG)
!

dlass = disruptive
n_equal_1_normalised < 0.0003
m gini = 0.4718
samples = 0.0%

value = [0.6186, 0.3814]

hhhhh

contiributions,

B e ‘ or information

https://github.com/andosa/freeinterpreter, A. Saabas
A. Palczewska et al., Integration of Reusable Systems (2014).

“"“2"“’“'{‘““ ”"“'“T““““ gain (+) and loss (-)
() (@) { 0.65 () (@)

Predictions for forest of M frees can be decomposed in 1< K[ X |
the K contributions from each evaluated input feature:  FG) =77 ), biasn+ ) | 7 > contriby (e, k)



DPRF 0-D scalar input features — DIlI-D and EAST
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