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Plasma pushed close to operational limits often leads to 
instabilities onset or control faults: unintentional disruptions

View from visible camera of disruption 
on Alcator C-Mod.

• Disruptions related to peak plasma performances: 
higher stored energy, longer confinement times…

• Real-time prediction and avoidance, with 
mitigation, mandatory when scaling to reactor 
sizes and forces.
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possible disruptive chains of events

Statistical studies show complex chains of events: 
disruption precursors

De Vries et al. NF 51 (2011) 053018 “Survey of disruption causes at JET”

Disruptions as final loss of control: 
successful precursors identification 
can inform plasma controllers on 

proper actuators.
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Active monitoring and prediction of soft/hard limits 
necessary to inform transition across ops boundaries

Proximity to stability boundaries 
need to be actively controlled: 

different control regimes

Courtesy of J. Barr
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Interpretable ML models for disruption prediction useful 
resources to identify in real-time stability boundaries

#175552

• On DIII-D and EAST, the
Disruption Prediction via Random Forest 
algorithm (DPRF) computes disruptivity 
and interprets its drivers in real-time.

• On KSTAR, similar exploration through 
Random Forest.

• JT-60U: Sparse Modeling by Exhaustive 
Search and Support Vector Machine.
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Deep Learning
DPRF

Survival Analysis
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Deep Learning extracts general representations of 
disruptive behavior across devices

J.X. Zhu et al, “A new Deep Learning architecture for general disruption prediction across tokamaks”, this meeting

• Numerical experiments with aggregated DIII-D, C-Mod, and EAST data show 
DL learns disruptive characteristics: device-independent knowledge.

• Non disruptive data results device-specific, not improving performances.

• Limited disruptive data from target device still needed for prediction, as well as 
all available non-disruptive data.
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Fusion Recurrent Neural Network (FRNN) with 0-D scalar 
inputs installed in DIII-D control system (PCS)

• FRNN Long Short-term Memory block 
implemented in DIII-D PCS.

J. Kates-Harbeck, et al., Nature (2019)

• Computing time < 2ms for real-time eval.

• Associated actuator response studies in 
progress.

• FRNN heat map shows disruption score 
at alarm time most sensitive to 
radiated core power and q95.

W. Tang et al., accepted 2020 IAEA FEC paper TH/7-1Ra

FRNN Sensitivity Study – shot 164582
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DPRF supervised binary classification algorithm: 
identify transition non disruptive – disruptive phases

• Fixed time for transition from safe to disruptive operational space.
• Training set thousands of discharges, agnostic to disruption type.
• Offline cross-machine investigation 0-D features (flattop data).

+ 
non disr

Transition time

C. Rea and R.S. Granetz, Fus. Science Tech. 74 (2018)
C. Rea et al., Plasma Phys. Control. Fusion 60 (2018)
C. Rea et al., Nucl. Fusion 59 (2019)
K. Montes, C. Rea et al., Nucl. Fusion 59 (2019)

DPRF is based on the 
Random Forest ensemble 
algorithm → collection of 
decision trees:

Provides metrics of 
interpretability.

→ DIII-D DPRF 2.0
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DPRF 2.0: to detect earlier disruptive precursors, 
feature engineering and dimensionality reduction

• 1D/2D profile information compressed 
into peaking factors.

• Profile diagnostics mapped onto flux 
surfaces or core / divertor regions.

A. Pau et al., IEEE TPS, 46 (2018)
A. Pau et al., Nucl. Fusion 59 (2019)
C. Rea, K.J. Montes, A. Pau, R.S. Granetz, O. Sauter, 
“Progress Towards Interpretable Machine Learning-based 
Disruption Predictors Across Tokamaks”, Fus. Science Tech. (2020)

Peaking factors are interpretable, 
easy to calculate in real-time
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DPRF 2.0: improved label classification by detecting 
transition between specific operational boundaries

• First disruptive precursors manually identified for hundreds of discharges → 
Transition into unstable operational space: scenario detection.

52 2First Precursors (Manual Analysis)

Locked Mode

RAD/UFO

Unclear

MARFE

Heating off

LOQ

Operational

LON

Other

K. Montes et al, “Accelerating Disruption Database 
Studies with Semi-Supervised Learning”, this meeting

S. Sabbagh et al, “Progress on Tokamak Disruption 
Event Characterization and Forecasting Research and 
Expansion to Real-Time Application”, this meeting

• ML algorithms: training composition 
can skew the sensitivity of the 
model towards certain scenarios.

• Need for (automated) 
identification of disruption causes.
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DPRF 2.0
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DIII-D DPRF 2.0 – peaking factors added to 0-D inputs
Feature contributions to explain disruptivity drivers

Decision paths in DPRF trees provide average measures of explainability
by assigning (±) contributions to input features during inference.

Access to disruptivity drivers in real-time: 
monitoring of unstable plasma features
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(see example in additional slides)
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DPRF 2.0 shows real-time feature contribution computation 
(~ 200 µs) and successful ONFR* integration

Assessed peaking factors as relevant 
metrics in scenario ~ ITER baseline

Closed the loop in the PCS by triggering 
early rapid shutdown, MGI, and ECH

C. Rea et al. IAEA FEC 2020

*Off-Normal Fault Response → Asynchronous and Emergency response. 
N. Eidietis et al., 2018 Nucl. Fusion 58 056023

real-time peaking factors 

real-time contributions to disruptivity 
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In progress: include DPRF 2.0 in DIII-D proximity control 
architecture to regulate stability and avoidance

∆κ = 𝑓𝑓𝑚𝑚𝑟𝑟𝑛𝑛𝑝𝑝𝑒𝑒𝑝𝑝 ∗ 𝑓𝑓κ,𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
𝑑𝑑κ
𝑑𝑑𝑑𝑑

∆κ𝑐𝑐𝑟𝑟𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐
∆𝑓𝑓κ,𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐

Disruptivity as general proximity 
of current plasma state to 

unstable ops space

Feature contributions can be 
mapped onto controllable plasma 

parameters to regulate stability

J. Barr, “Control Solutions Supporting Disruption 
Free Operation on DIII-D and EAST”, this meeting
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DPRF disruptivity analogous to current probability 
of membership to disruptive class

The disruptivity 𝑃𝑃𝐷𝐷 can be used to:
• Predict the future probability of 

plasma survival 𝑆𝑆 𝑑𝑑 + Δ𝑑𝑑 𝑑𝑑) [1] 
or 

• Model the instantaneous hazard [2,3]
ℎ = d ln 𝑆𝑆 /d𝑑𝑑
to be used as probability generator.

[1] RA Tinguely et al 2019 PPCF 61
[2] KEJ Olofsson et al 2018 PPCF 60
[3] KEJ Olofsson et al 2018 FED 146

Alcator C-Mod data used as 
proof of concept to combine 
DPRF with survival analysis.
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Hazard function modeling connects dynamical systems 
and risk-aware control design by probability generation

ML-enabled direct hazard function h(x) 

Dynamical system: a(x) drift, b(x) diffusion Survival function for future event

• Dynamical system (a, b) either by ML or first principles or a combination; plasma state x.
• Dependence on future actuation makes future event probability conditional: control design.
• Hazard function directly corresponds to (probabilistically calibrated) operational boundaries.
• Underutilized approach: only tearing mode events analyzed (in DIII-D) to date.

KEJ Olofsson et al 2018 PPCF 60
KEJ Olofsson et al 2018 FED 146
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DPRF installed in EAST PCS: feature contributions and 
disruptivity calculated in real-time in < 200 µs

• DPRF trained using
400 high-density (ne/nG > 0.8) 
disruptions and 400 non-
disruptive data.

• Tested in real-time on 
172 disruptive and 456 non-
disruptive discharges.

• Tested in closed-loop to fire 
mitigation system.

C. Rea et al. IAEA FEC 2020
W. Hu, C. Rea et al., in preparation 2020
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EAST DPRF: disruptivity threshold of 0.8 guarantees 
SA ~89% and FA ~9% and alarm > 1 s

• SA: successful alarm, disruption 
detected in advance;

• FA: false alarm, alarm triggered 
for non-disruptive discharge.

C. Rea et al. IAEA FEC 2020
W. Hu, C. Rea et al., in preparation 2020
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Development of data-driven disruption prediction system 
using random forest method in KSTAR

J. Lee et al., private communications
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High-beta disruption prediction in JT-60U 
through exhaustive search and SVM

• Feature extraction via Sparse Modeling → K-sparse Exhaustive Search

• Binary classification through linear Support Vector Machine (SVM)
to extract decision function for the boundary:

T. Yokoyama et al., Fus. Eng. Design 140 (2019) 67–80

Top combination:

Results in PSR ∼ 95%, 
FAR ∼ 15% at 30 ms 
before the disruption.
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High-beta disruption prediction in JT-60U 
through exhaustive search and SVM

Decision function parametrized from 
top combination of features enables 

disruption likelihood estimate

T. Yokoyama et al., Data-driven study of high-beta disruption prediction in JT-60U using exhaustive search, AAPPS 2019

• Decision function obtained by retraining the 
SVM, after taking the log of the training data:

T. Yokoyama et al., Fus. Eng. Design 140 (2019) 67–80
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More than 20 years of research in disruption prediction 
have produced voluminous literature

Device References (incomplete list)
ADITYA Sengupta and Ranjan 2000 NF 40

Sengupta and Ranjan 2001 NF 41

Alcator C-Mod Rea et al 2018 PPCF 60
Montes et al 2019 NF 59
Tinguely et al 2019 PPCF 61

ASDEX-U Pautasso et al 2002 NF 42
Windsor et al 2005 NF 45
Aledda et al 2015 FED 96-97

DIII-D Wroblewski et al 1997 NF 37
Rea and Granetz 2018 FST 74
Rea et al 2018 PPCF 60

Montes et al 2019 NF 59
Rea et al 2019 NF 59
Kates-Harbeck et al 2019 Nature 568

EAST Montes et al 2019 NF 59

JET Windsor et al 2005 NF 45
Cannas et al 2004 NF 44
Cannas et al 2007 FED 82
Murari et al 2008 NF 48

Murari et al 2009 NF 49
Ratta’ et al 2010 NF 50
De Vries et al 2011 NF 51
Vega et al 2013 FED 88

Cannas et al 2014 PPCF 56
Ratta’ et al 2014 PPCF 56
Murari et al 2018 NF 58
Pau et al 2018 IEEE TPS 46

Kates-Harbeck et al 2019 
Nature 568

Pau et al 2019 NF 59

JT-60U Yoshino 2003 NF 43
Yoshino 2005 NF 45
Yokoyama et al. 2019 FED 140

J-TEXT Wang et al 2016 PPCF 58
Zheng et al 2018 NF 58

NSTX Gerhardt et al 2013 PPCF 60
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Data-driven predictors to be adopted as last line of 
defense for disruption mitigation but…

• Interpretable output combined with control algorithms can inform the PCS 
on disruption precursors and be employed in avoidance schemes.

– Frameworks exist to extract plasma future survival →  Tinguely et al.
or instantaneous hazard (as probability generator) for instabilities → Olofsson et al.

• DPRF provides explainable predictions – tested on C-Mod, EAST, DIII-D:
– Works as real-time scenario detector (DIII-D, EAST).
– To be integrated with proximity controller for continuous avoidance (DIII-D).

• Analogous efforts ongoing at international facilities:
– J. Lee and J. Kim @ KSTAR
– T. Yokoyama @ JT-60U;

• Ongoing work to design predictor for ITER:
– Few ITER disruptions might still be needed to design effective data-driven solutions.

– A. Pau and others @ JET, TCV, AUG;
– G. Dong et al. @ DIII-D.

→  J.X. Zhu et al.
→ J. Kates-Harbeck et al.  
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Decision paths in DPRF trees provide local measures of 
explainability through information gain and loss
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Predictions for forest of M trees can be decomposed in 
the K contributions from each evaluated input feature:
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DPRF 0-D scalar input features – DIII-D and EAST

EAST
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