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Particle assimilation is an important meftric for SPI

performance

« SPI achieves higher assimilation than
equivalent MGl

- Solid fragments penetrate plasma
— More instantaneous particle delivery

* Injected parficle quantities are typically

large
— JET plasma: n_eV ~ 8x10?! electrons

4x102' Ne atoms
3x1022 Ne atoms
1x1023 Ne atoms

4.5 mm pellet:
8 mm pellet:
12.5 mm pellet:

e But not all of the injected material is
assimilated by plasma
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Net parficle assimilation can be characterized during the

disruption CQ

 CQ density is a direct indicator of
parficle assimilation

- Strong density asymmetry exists early in
the disruption, due to localized particle
source and finite spreading of pellet ions

- But relaxes later on (ablation during CQ is
much lower)
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e When direct measurements of CQ

density are unavailable, |, decay allows
comparison under otherwise similar
conditions

— For high-Z injection, higher assimilation
accelerates the CQ
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SPI data from mulfiple machines contribute to
assimilation studies
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Plasma energy SPI species Diagnostics
W, (MJ) Wmag (MJ) Ne D, Ar CQ ng CQ |IO
J-TEXT ~0.03 0.05 v v v
KSTAR 0.3-0.5 1.2 v v * v v
DIlI-D 0.1-2 1-3 v v * v e
JET 0.5-7 4-23 v v * v
— JET
ok J-TEXT Including mixtures il F |7 —r
f"_'" ":lz EPP% * Ar SPI typically for RE dissipation : = YT
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Outline of talk

Experimental scalings

Modeling of SPI assimilation

Assimilation of multiple SPIs

Deuterium SPI
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Experimental scalings for n-o have been derived from
DIlI-D database

. Assimilation can depend strongly on plasma - Ablation/ionization driven by
oarameters fwo energy sources
7 mm Ne SPl database Wi ~ <nZ>V Constant geometric
2.5 Super_H:I'j ' W 9 172282, 162840 Wy ~ L [p factors (Ignorable)
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Scaling reproduces measured CQ densities throughout

database
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These
disruptions do

| not have REs

o Global plasma parameters can reasonably predict
the densities achieved by SPI

e A small number of outliers suggest that hidden
variables may exist
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Scaling identitfies importance of various energy sources

throughout disruption

- Dependence on (pre-disruption) temperature/
density are constant throughout CQ

- These affect the early ablation, but the dependences
cannot change after the TQ

- Early in the CQ, density is dominantly determined by
electron temperature

- Expected from pellet ablation physics: N ~ Tf/sni/?’

e Early in the CQ, has little influence,
but becomes significant by middle of CQ

- Ohmic dissipation of poloidal magnetic energy
becomes important later in sustaining CQ density
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Additional factors such as penetration depth may play o
role in determining assimilation
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Modeling of SPI
assimilation
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SPI shutdown can be simulated using energy balance
model

« KPRAD'Zsimulates volume-averaged (0D) SPI-plasma inferaction

e Electron energy' Ohmiclheating lon co{lisions
[ 1 [ 1
OWih e ini in wall owa 2rRn\ o OWypoet 3 ~
o = eV Z" 'S e — ey Z ny Sl — neV, Z"HS,’Z(:J ( 3, ) e (Te=T)
7=0 7=0 7=0

\ y J L —

. . lonization/
Species/charge-dependent radiation recombination
(9” th,1 3

e |lon energy: ar - = 37 Voei (Te = T))

Nevtral source

lonization Recombination from SPI ablafion

ot

« Charge state populations: = e (Mj—1Sion.j—1 + Mj+1Srecj+1 — 7 Sionj — 1 Srec.j) + (aﬂ>
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. : L= 49, =, ZEZ=__r_22

Plasma/wall circuit: 5t ST s T

5/3 4/3
SR T, p 1/3
o Pellet ablation®: G=i(X) —%- 5000 0g) Merd F,==G/(4nr ,00)
) 1D.G. Whyte et al. J. Nucl. Mater. 313 (2003) 1239
Species-dependent ablation Surface recession 2E.M. Honmr?n (e]’r al. cucfmrib(.] Pelcrusmo (Phys.)48 (2008) 260
%Qﬁfﬂl}}’ggg 3P.B. Parks, TSDW (2017) Princeton, NJ




KPRAD simulates entire disruption from TQ to CQ

Ablation of individual pellet fragments are
tracked independently

— Early fragments undergo more ablation

« Ablatfion process is self-regulated, with radiation
causing plasma cooling which limits ablation

e This TQ leads to subsequent CQ including effects
of inductive coupling to vessel wall

 Model calculates total assimilation, while
simulated denisities, |, decay can be compared
to experiment
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Example: 7 mm Ne SPI in DIlII-D H-mode plasma
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KPRAD simulations are in good agreement with DIII-D
experiments, despite the 0D model

58
8 Ohmic twwoz| H-mode tooss] 8 Super-H 172282 £ Super-H: [
Wi = 0.21 MJ Wi = 0.78 MJ Wi = 1.94 MJ I I e
& 6 Lb=146 MA | 6 b=128 MA | 6f I, =1.55 MA =, | lowmic: +x
E b 0
& 4l |— Me:s::r;d al 4l c 4}
:. ....... 0 ee -c
8 2 a a ]
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= 3
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T I, [MA] T l, [MA] l, [MA] Measured ncq [102 m*]
Beginning End ' .
of CQ of CQ « Agreement found over entire
Ne SPl database
« Density evolution during the CQ is well matched _ With same outliers from the
« Agreement over a wide range of pre-SPI plasma empirical scalings
parameters » Simulated densities are
systematically low by ~25%
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Simulations match measured CQ rates across multiple

machines

« Pellet compositions can be freely
varied based on Ne/D, mixtures

— Plasma parameters are held
constant

* A version of this experiment has
been carried out on KSTAR, DIII-D,
and JET
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KPRAD simulations yield typical assimilation rates

Range of net assimilation rates: 310 26% 5 to 42% 12 to 90%
(depending on mixture) ] ] e
KSTAR DIll-D o JET .
. . Wy =05MJ,1,=0.8 MA Wy =08 MJ, |, =1.3 MA Wir=40MJ,l,=25MA
» Pellets with hlgher neon content 30 7 mm pellet 1 30r 7 mm pellet 1 30r  8mm pellet T
have lower assimilation rate B 9
- Radiative cooling limits ablation g 20! 1 gl I wtog
5 O Experiment 0
o O Simulation ' O
o Q
. 10t 1 10 1 10
« Total neon assimilation ~ %}
. : 838 A ' g mP '
(Ne %) x (Assimilation fraction) ol ol . ol
. . 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
so higher Ne% still leads to faster SPI Ne content [%] SPI Ne content [%] SPI Ne content [%]
CQ
>4 to 58% assimilation
» These assimilation fractions are in DIlI-D NIMROD
agreement with more advanced Simulations

extended MHD simulations -
OAK RIDGE C. Kim et al., PoP 26 (2019) 042510 KﬁTAR puI-b JE T

National Laboratory




%OAK RIDGE

National Laboratory

Assimilation of multiple SPIs
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Multiple SPIs will be required for large injection quantifies
in ITER

« Multiple SPI capabilities currently exist on two devices

Top View
A

KSTAR: 180° apart toroidally DIil-D: gﬁ);ggﬁjyﬁ

-

Shattered
Pellet Injector
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Top Launch
_— Guide Tubes

...................... High Field Side
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4 \ \ ( | Shattered A BaEa
i : | / ‘ 3\ Pellet Injector  Argon Pelle
SPI ﬂlght tube ' | / \\ : \ (three barrels) Injector
( L one
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Midplane Launch /-}y/ZQf‘N 7 /n
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\ >/

%OAK RIDGE

National Laboratory




Simulations reproduce dual SPI frend observed in DIII-D

Simulation i
e Trend: Presence of second pellet (At=0) — 95 1.25 Experiment
reduces Ne assimilation and slows CQ E ) A s AR
& 2.0+ Reduction i | 1.007 Reduction O
Z 15 e ® 075 - 0.
. 3. A 8 1% _a
« Pellet 1: 7 mm with 100% Ne 510 o © 050 5 °F
= o
. . : = 0.5/ 0.25} 1
Pellet 2: 7 mm with 2.4% Ne 2 " Modeled - Measured
6 6 1
. . T . T
« Pellet mixtures are different, so second SPI - ® A 5@ | o
. o E 4 A o E4° -
lowers the total Ne/D, ratio N = A o g
© o o I - -
-> At=0 has less Ne assimilation and slower CQ Es | L aa| ER | L] ...
2 _:;;; 2} Slowing 12 _:;;s 2+ Slowing
o o
O 0 Modeled o 0 Measured
« Modelis successful despite 0D simulation A0 1 w2 0 2 4
not accounting for SPI locations Arrival At [ms] Arrival At [ms]

— 3D effects not likely to be important
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Simulations reproduce dual SPI tfrend observed in KSTAR

e Trend: Presence of second pellet (At=0)
accelerates CQ

e Pellet 1: 7 mm with 5% neon

e Pellet 2: 7 mm with 5% neon

« Both pellets are identical, so Ne/D, ratio does
not depend on fiming

-> At=0 assimilates more Ne leading to faster CQ

 Modelis successful despite 0D simulation not
accounting for SPI locations (i.e. 180° apart)

— 3D effects not likely to be important
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KSTAR shots: ['023456', '023464', '023473', '023476")

a) -
Experiment
#23456: Atg,en~ (i.e., single SPI)
0. #23476: At;,g,~0.68 ms \
" #23473: Atg,g,~0.37 ms
#23464: Aty,,~0.05 ms Fast quench

-0.004 0.000
Time to TQ end [s)

5.1 '
El L 0O o o o
S © Simulation
= 9.0} 1
< (o
=
s ®
4.9 , [
0 1 2 " oo
At [ms]
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KPRAD does not fully capture the physics of D, SPI

* DII-D 16 mm pellet (Ngp/Npigsma = 420) * DII-D 7 mm pellet: Ngpi/Npigsma = 17
- Good estimate of total assimilation - Simulation does not produce disruption
- CQrate does not match experiment (i.e. - In absence of radiative collapse, model
T, and resulfing plasma resistivity) has insufficient physics (e.g. MHD)
142149 _ _ . 160607
1.5 Current [MA] - () - Current [MA] 1
Measured 1 i Measured 1
i .~ Modeled i Modeled
0.0 . ITY 0.0 . . .
103 <= mnns Temperature [eV] 103 "7 Temperature [eV]
[ 1 [ Veeeesssesccacacascaaaaa 1
10’ ‘“u 10°
20 .. Electrondensity | 200 Electron density [10% m?] -
~~~~~~ [10% m?] D TR TP TEERETE
0 — E—— p—=———
0 10 20 0 10 20
Time [ms] Time [ms]
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Some experimental characterization of D, SPI assimilation
Is available

» Assimilation studies with 16 mm pellets in 0.25  Ohmic | 4' o ?13’1\/iW
DIII-D were carried out = o = d2MW 5
S 020 [ — L @i -
> | o | 4N
5 2amw | AMW
o . L S S e .
« Measured assimilation fractions were not g . .
a strong function of plasma thermal 2010 AU U — i
energy £ . .
2 005 JSRSSSSIUN SN N—— -
< DINI-D
. iti : : 0.00 — .‘ ;
Densities were determined using VB 0 500 1000 1500 2000
emission, but are lower bound estimates Wo 4)
th

due to signal saturation
Commaux et al., NF 51 (2011) 103001
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Summary

« Empirical scalings successfully match measured CQ densities in large DIII-D database

- Electron temperature is dominant parameter affecting assimilation, with Ohmic heating
becoming important later in CQ for sustaining the density

- Suggests global energy balance plays a large role in determining assimilation rates

 KPRAD simulations match measurements in KSTAR, DIII-D, and JET
— Reproduce CQ rates and densities, for a range of plasma parameters, pellet compositions
- MHD effects are not considered in these simulations, implying lesser importance
- Typical assimilation rates for moderate pellet sizes (~7 mm) are: ~10% for Ne SPI, or several
times higher for mixtures (26 to 20%)
e Dual SPIresults on DIII-D and KSTAR can be explained by KPRAD simulations
— Suggests 3D effects are not as important as total species mixture

» D, SPI assimilation is more difficult fo model
- More complete physics model required in absence of radiative collapse

- (Analysis of MHD signals, consideration of sputtered impurities are ongoing)
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