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ITER needs simultaneous multi-injection of SPIs
for fulfilling the requirements (especially for runaway electron avoidance).

• When considering RE avalanche, initial avoidance of RE is important in ITER.

• Thus, ITER adopts massive low Z injection to increase density suddenly.

• For the purpose, two more SPIs will be added on equatorial plane.

M. Lehnen, ITPA-CC meeting (2019).
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However, the feasibility of simultaneous multi-injection
has not been fully demonstrated.

• Dual injections in DIII-D exhibited somewhat confusing results.

• Simultaneous injection showed fast cooling time up to thermal quench.

• On the other hand, total radiation in simultaneous injection seems to be decreased.

• Slow current quench duration supports the reduction of total radiation as well.

J.L. Herfindal et al., APS-DPP (2017).

Fast cooling due to dual SPIs Less radiation Slow current decay
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The problem with simultaneous multiple SPIs is
similar to obtaining enough water by melting snow ASAP.

• Snow can extinguish the bonfire itself: Bonfire vs. Snow ↔ Plasma vs. SPIs

• How to get enough density for suppressing runaway electrons?

• The problem could be complicated depending on the relation of players.
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KSTAR installed dual SPIs for symmetric multi-injection.

• In KSTAR, two identical SPIs were installed in toroidally opposite locations.

• Up-looking bent tube shatters the pellet and aims plasma center: ITER-like design

• Low Z (D2), high Z (Ne, Ar), and their mixture can be injected selectively.

• Three barrels in each SPI control the pellet size (i.e., amount of particles): 4.5, 7.0, 8.5 mm → 4.5, 2 x 7.0 mm

• KSTAR volume: 1.8 x π x (0.45)2 x 2 x π x 3.14 x 1.8 ~ 12.9 m3

• 4.5 mm: D# =2.18x1021, Ne# =3.83x1021, Ar# =5.37x1021, (D# of shell 1.10x1021)

• 7.0 mm: D# =8.77x1021, Ne# =1.54x1022, Ar# =2.16x1022, (D# of shell 2.70x1021)

• 8.5 mm: D# =1.60x1022, Ne# =2.82x1022, Ar# =3.96x1022, (D# of shell 4.00x1021)  Punch will be installed.

SPI at G-port

SPI at O-port

Supplied by ORNL
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Installation/upgrade of diagnostics are concurrently progressing 
for investigating the disruption mitigation.

• Filtered AXUV (poloidal)
• Tangential IR TV (100 Hz)
• Imaging bolometer (100 Hz)

• Two-color interferometer (tangential 5 channels) 

• Dispersion interferometer (vertical 3 channels)  
• ECEI 2 (500 kHz)

• ECEI 1 (500 kHz)

• Divertor IR TV (vertical, 0.25 Mpx@1 kfps) 

• Fast imaging bolometer (>1 kHz)

• CCD1 for O-port (10 kfps)
• CCD2 for G-port (10 kfps)
• ECE radiometer

• D-alpha monitor (Ne, Ar, He filter)
• Visible filter scope (Ne, Ar, He filter)
• Visible spectrometer
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• Hard X-ray monitor
• Neutron detector

SPI

• Filtered AXUV (poloidal and toroidal)
• IR sensor bolometer

SPI

Helicon

Toroidal AXUV arrays from O-port SPI

#1: +56.25 °
#2: -11.25°
#3: -33.75°
#4: -101.25°

• IRSB

• SPI

• TFAA

• TCI
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1st SPI injected in November, 2019 and 2nd SPI injected in January, 2020

• To achieve perfect symmetry, the flight tube length had to be ~ 12 m.

• This is longer than the ITER flight tube (~ 6 m).

SPI

at G-port

SPI

at O-port

180°
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Simultaneous injection of dual SPIs showed good synchronization
(Δtcavity~0.2 ms) in microwave cavity signal and (Δtflash~0.05 ms) in neon flash. 

• This time difference is well within thermal quench duration (~1 ms).

Δtcavity~0.2 ms

Δtflash~0.05 ms
Neon flashes

from O and G ports

Microwave cavity signals

from SPI_O and SPI_G
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Dual SPIs have a shorter cooling time to thermal quench
when compared to a single SPI.

Ne:D atom ratio = 5:95 in 7.0 mm pellet

Target discharge: NB+EC heated 800 kA H-mode discharge (WMHD~450 kJ, q95~3.2, βp~1)

4.4 ms

1.8 ms

Single SPI Dual SPIs TQ end (matched)

Half-turn neon

in a single SPI
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Dual SPIs brought early thermal quench
and also fast current quench rate in KSTAR.

Single SPIDual SPIs

• This result is different from previous DIII-D result with 120° separated SPIs.

• Why? Due to the exact symmetric injection of KSTAR SPI?
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Dual SPIs made higher density during disruption mitigation
→ promising result in relation with ITER DMS strategy against RE suppression.

• New dispersion interferometer measured the abrupt density rise.

• It uses short wavelength (1064 nm) for avoiding density cutoff and refraction.

• Conventional two color interferometer suffered fringe jump during disruption mitigation.

Nearly double density by dual SPIs
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#23464: dual SPIs (7.0+7.0 mm)

 Δtflash~0.05 ms
#23456: single SPI (7.0 mm)



Intentional asynchronization of dual SPIs exhibited slower current quench
in proportion to the time delay between two SPIs.

#23456: Δtflash~∞ (i.e., single SPI)

#23476: Δtflash~0.68 ms

#23473: Δtflash~0.37 ms
#23464: Δtflash~0.05 ms

• Even within thermal quench duration, the delay level affected the quench rate.

• We measured the time delay by the abrupt increase of neon flash Δtflash.    

Fast quench
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#23456: Δtflash~∞ (i.e., single SPI)

#23476: Δtflash~0.68 ms

#23473: Δtflash~0.37 ms
#23464: Δtflash~0.05 ms

Different shape of Ip spike reflects different disruption processes
during thermal quench depending on the level of synchronization. 

• Is it originated from the geometry of SPIs (single vs. dual)?

• Or just from the amount/species of injected impurities?
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n=1 mode amplitude of exact synchronization was
meaningfully low during thermal quench. 

Time to TQ end [s]-0.002 +0.002

#23456: Δtflash~∞ (i.e., single SPI)

#23476: Δtflash~0.68 ms

#23473: Δtflash~0.37 ms
#23464: Δtflash~0.05 ms

• How much does it affect the mixing of impurity?

• #23473 showed similar peak amplitude but rapid drop when compared to #23456 and #23476. 

n=1 mode amplitude
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Multi-barrel injection from same toroidal and poloidal location showed
similar current quench rate with dual SPIs.

• Same amount of neon was used in both 7.0 mm and 8.5 mm pellets.

• 7.0 mm: Ne (1.2x1021) / D (2.3x1022) vs. 8.5 mm: Ne (1.2x1021) / D (4.2x1022)

• Is the dilution cooling also important? #23456 (7.0 mm) vs. #23600 (8.5 mm)

#23456: single SPI (7.0 mm)

#23464: dual SPIs (7.0+7.0 mm)

#23600: single SPI (8.5 mm)

#23602: multi-barrel (7.0+8.5 mm)  Δtcavity~0.17 ms
#23607: multi-barrel (7.0+8.5 mm)  Δtcavity~0.91 ms
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Multi-barrel injection from same location also made
higher density during disruption mitigation

→ promising result in relation with ITER DMS strategy against RE suppression.

#23464: dual SPIs (7.0+7.0 mm)

 Δtflash~0.05 ms

#23602: multi-barrel (7.0+8.5 mm)

 Δtcavity~0.17 ms

#23607: multi-barrel (7.0+8.5 mm)
 Δtcavity~0.91 ms

Multi-barrel injection

even higher than dual injection

Slightly higher peak

but shorter duration

Slightly slower density rise

but longer duration

#23600: single SPI (8.5 mm)
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Synchronized dual (#23464) and also synchronized multi-barrel (#23602) 
showed smaller Ip spike than others.

• Ip spike of #23607 is more close to that of #23600.

• Should we consider both the geometry effect and the amount of particles?

• Is the disruption process between #23464 and #23602 similar?

#23456: single SPI (7.0 mm)

#23464: dual SPIs (7.0+7.0 mm)

#23600: single SPI (8.5 mm)

#23602: multi-barrel (7.0+8.5 mm)  Δtcavity~0.17 ms
#23607: multi-barrel (7.0+8.5 mm)  Δtcavity~0.91 ms
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Larger perturbation (SPI) on single side caused
more strong n=1 MHD activity.

Time to TQ end [s]-0.002 +0.002

• Probably, the disruption process between #23464 and #23602 could be different.

n=1 mode amplitude

#23456: single SPI (7.0 mm)

#23464: dual SPIs (7.0+7.0 mm)

#23600: single SPI (8.5 mm)

#23602: multi-barrel (7.0+8.5 mm)  Δtcavity~0.17 ms
#23607: multi-barrel (7.0+8.5 mm)  Δtcavity~0.91 ms

21



Contents

• Main goal of symmetric dual shattered pellet injectors (SPIs)

• Simultaneous injection of SPIs

• Dual injections from different toroidal locations (180° separation in KSTAR)

• Multi-barrel injections from same toroidal and poloidal location

• Wall recovery from massive material injection in superconducting tokamak

• Summary and future plan

22



• Low loop voltage (~4 V, ~0.4 V/m) due to the restriction of superconducting coils

• Long field penetration time (40~50 ms) due to connected vessels and passive stabilizer

• Restriction in glow discharge cleaning due to toroidal field even after massive material injection

• Field structure deformation due to ferromagnetic incoloy 908 effect KSTAR specific issue

• Incoloy 908 used in superconducting coil jacket has similar thermal expansion rate with Nb3Sn.

• However, ferromagnetic incoloy 908 (μ~10) nonlinearly deforms magnetic field structure.

Issues (difficulties) of plasma start-up in superconducting tokamak

Coil name Amount

TF coil 16

PF1 Coil 2

PF2 Coil 2

PF3 Coil 2

PF4 Coil 2

PF5 Coil 2

PF6 Coil 2

PF7 Coil 2

Total 30

KSTAR superconducting coils

Incoloy 908

Nb3Sn
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ECWC

(1.9T)

Nov. 6th

16:30

17:30

18:30

Disruption

Disruption

NBI fault

Disruption

Disruption

NBI fault

Disruption

Disruption

ECWC

ECWC

ECWC

ECWC

ECWC

NBI fault

NBI fault

Nov. 4th

16:30

17:30

18:30

Disruption

Ramp-up fail

Ramp-up fail
(3.5T)

Disruption

Start-up fail

Start-up fail

Start-up fail

Start-up fail

Start-up fail

Start-up fail

Start-up fail

Start-up fail

Recovery of wall condition after SPI
by electron cyclotron wall cleaning (ECWC) in superconducting tokamak

• Establishment of wall recovery procedure with ECWC at Bt 1.8~1.9 T
• Routine usage in SPI session: 16 minutes shot interval < pellet formation time 

• Little start-up failure with ECWC regardless of SPI species (D2, Ne)

• Reproducible discharge and stored energy

Hard time without ECWC

during 1st SPI session

Success with ECWC

during 3rd SPI session
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Summary and future plan

• KSTAR investigated the feasibility of multiple SPI injections to support the ITER DMS strategy.

• Promising additive results were observed with simultaneous dual injection in two symmetric SPIs.

• Simultaneous multi-barrel injection at the same location also showed promising additive results.

• Synchronization is still important, even within the TQ duration (<1 ms).

• Depending on the injection methods, the evolution of the disruption process seems to be different.

• The n=1 mode amplitude is low as expected in synchronized dual injection.

• The different behavior of IP spike also reflects the different evolution of internal current profile.

• Understanding of disruption process is important for optimizing the disruption mitigation method.

• KSTAR established a recovery process after disruption mitigation in the superconducting tokamak.

• ECWC was effective for superconducting tokamak where glow discharge cannot be used.

• In 2020 campaign, we will further investigate the feasibility of injecting multiple SPIs simultaneously.

• Multi-barrel injections from two SPIs are possible using the same size barrels.

• Upgraded diagnostics (bolometers, interferometers and fast cameras) will support the study.
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Supplement
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Absolute measurement of radiation power during SPI mitigation is crucial
for checking the feasibility of simultaneous injection (funded by ITER DTF).

Poloidal arrays of filtered AXUVs

Spectral responsivity of AXUV*

• Filtered AXUV arrays 
• A, B band : measurable by MgF2 filter

• C band (11 eV ~ 130 eV)

• Filter cutoff energy ~ 130 eV

• Flat transmission over 130 eV *D.S. Gray et al, Rev. Sci. Instrum. 75 376 (2004).

Effective responsivity with filter
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Alternative measurement of radiation power is also being prepared
along with AXUV sensor based diagnostics (funded by ITER DTF). 

• When considering the non-linear spectral responsivity and degradation§, 

other type of bolometer is needed for absolute power calibration.

• IR sensor based bolometer is being developed by POSTECH and NIFS.

§M. Bernett et al., Rev. Sci. Instrum. 85, 033503 (2014).

*B.J. Peterson et al., Rev. Sci. Instrum. 74 2040 (2003).
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Resulting density rise is the final goal of simultaneous multi-SPIs
for avoiding runaway electrons (funded by ITER DTF).

Top-view of the TCI layout

• Present two-color-interferometers in KSTAR have tangential line of sights.
• It is not adequate for measuring SPI effect when toroidal symmetry is broken.

• Dispersion interferometer is being installed vertically at G-port (SPI location).
• Dispersion interferometer is intrinsically robust to mechanical vibration.

• Short wavelength (1064 nm) is being considered.

• Refraction issue due to density gradient

• Multi-channel expansion is under discussion.

Cross-sectional-view

of the dispersion interferometer layout

Cancelled
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Current quench rate exhibited the tendency of saturation
with increasing neon fraction.

Halo current fraction

depending on neon fraction

LM (No SPI)  (#22861)

Pure D2 (#22899)

5% Ne           (#22906)

10% Ne         (#22903)

20% Ne         (#22901)

Pure Ne         (#22863)

Current quench rate depending on neon fraction

• 800 kA H-mode target

• 7 mm SPI at t=6.0 sec

• Wth + Wmag ~ 1 MJ dissipation

• 3x1021 m-3 CQ density achieved
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