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Outline 2/ 30

“Runaway dynamics in the DT phase of ITER operations in the presence of
massive material injection”,
[Vallhagen, Embreus, Pusztai, Hesslow and Fülöp, ArXiv 2004.12861, submitted to JPP]

� Simplified disruption modelling based on the “GO framework”
� Neon injection
� Combined deuterium and noble gas injection

I scan over the injected densities
I time-dependent vs equilibrium
I current and temperature evolution in representative cases

� Estimate of the effect of
I opacity
I transport of neutral particles
I non-uniform radial deposition
I hot-tail generation



Simplified disruption modelling in the “GO framework” 3/ 30

� Current density in elongated plasmas
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Sum of Ohmic and runaway current densities j‖ = σE + ecnRE 4/ 30

Runaway rate
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� Dreicer seed: neural network trained on large database of kinetic simulations.
https://github.com/unnerfelt/dreicer-nn [L Hesslow et al, JPP 2019]

� Tritium seed [R Martin-Solis et al, NF 2017]
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I Fraction of the electron spectrum above the critical runaway energy Wcrit
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https://github.com/unnerfelt/dreicer-nn


Compton source 5/ 30

� In DT operation γ-rays emitted by the activated walls Compton scatter
electrons to runaway region.

� Gamma flux energy spectrum in ITER [R Martin-Solis et al, NF 2017]

Γγ(Eγ) ∝ exp (− exp (z)− z + 1) with z = [ln (Eγ(MeV)) + 1.2] /0.8

(Details of the spectra will depend on the final configuration of the first wall and blanket.)

� Total Compton cross-section
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Hot-tail generation 6/ 30

� Hot-tail generation is expected to dominate over Dreicer generation in ITER.
� Some (but probably not all) of the hot-tail runaways are expected to be lost

due to the breakup of magnetic surfaces that accompanies the thermal
quench.

� Recent fluid+kinetic simulations show that taking into account all the hot-tail
electrons overestimates the runaway current by a factor of four in ASDEX
Upgrade [Hoppe et al, submitted to JPP 2020]

� Here we neglect both hot-tail generation and losses due to magnetic
fluctuations, for simplicity→ runaway seed is likely to be underestimated.

� Effect of remnant hot-tail will be discussed later.



Avalanche growth rate 7/ 30

Generalization of Rosenbluth-Putvinski calculation to account for the presence of weakly
ionized impurities [L Hesslow et al, NF (2019)]

� Asymptotic matching, valid also when E ∼ Eeff
c

or nZ � nD:
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� Stronger avalanching in the presence of weakly
ionized atoms.

� Increased number of target electrons available
for the avalanche process is only partially
compensated by the increased friction force.

0 20 40 60 80 100

E [V/m]

0

1

2

3

4

5

Γ
[m

s−
1
]

Kinetic simulations

Eq. (14)

Mart́ın-Soĺıs et al.

Rosenbluth-Putvinski

Avalanche growth rate for nD = 1020 m−3,
nAr+ = nD, T = 10 eV.

Reduction of runaway generation due to finite aspect ratio is negligible at high densities and electric fields, due to
the high collisionality of electrons at the critical momentum [McDevitt&Tang EPL 2019].



Time-dependent energy balance 8/ 30

� Energy loss: radial transport due to magnetic fluctuations and line radiation due to
impurity influx.

� Initial part of thermal quench: Te(t, r) = Tf + [T0(r)− Tf] e
−t/t0 until the central

temperature drops to 100 eV.

� After this, energy balance equation:
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� The effect of the heat diffusion and Bremsstrahlung radiation terms are negligible.

� The density of each charge state for every ion species is calculated from
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.

� The ionization, recombination and line radiation rates taken from ADAS.

� Pion is the ionization energy loss.



Pure neon injection: nNe = 1020 m−3 9/ 30

� DT plasma with initial plasma current I0 = 15 MA, j(r) = j0
[
1− (r/a)0.41

]
� 〈ne〉 = 1020 m−3, flat
� T0 = 20 keV

[
1− (r/a)2

]
, Tf flat.

� Injected material uniformly distributed at the beginning of the simulation.
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Case 1: nNe = 1020 m−3 10/ 30

� Radiative losses (solid), radiative and
ionization losses (green dash-dotted)

� Ohmic heating (blue dashed and blue
dotted).
I dashed: johm = 1.69MA/m2

corresponding to the initial on-axis current
density

I dotted: johm = 0.2MA/m2 representing a
case where the Ohmic current has partially,
but not completely, decayed

� The equilibrium temperatures for both
current densities are in the order of a
few eV.

� Large amount of partially ionized neon
→ large avalanche growth rate.

� Large RE conversion→ 6.7 MA
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Maximum runaway current as function of injected noble gas density 11/ 30

� Two models for avalanche
generation:
I with partial screening

[Hesslow et al, NF (2019)]
I with complete screening (CS)

[Rosenbluth and Putvinski, NF (1997)]

� Effect of screening increases the
final runaway current for both argon
and neon injections.

� Effect of elongation is very small. 0.3 0.6 1 2 3 4 5 6
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Neon + deuterium 12/ 30

� Below the green solid line CQ time is longer than 150 ms (insufficient material injection to induce a
complete radiative collapse).

� Above the green dashed line, the Ohmic CQ time is less than 35 ms (boundary to avoid damage due to
torques on the first wall).



Time-dependent energy balance vs equilibrium 13/ 30

� Time-dependent leads to higher runaway currents, especially for high
deuterium contents.

� In the time-dependent case:
I It takes some time to reach the equilibrium ionization distribution.
I Low degree of ionization→ larger radiative losses→ lower temperature→

higher induced electric fields→ higher runaway currents.
I If the temperature drops too low, deuterium starts to recombine→ increases the

avalanche.
I Ionization energy loss matters.



Effect of elongation, argon+deuterium 14/ 30



Representative cases 15/ 30

� The initial deuterium density is nD0 = 1020 m−3.

� Injected material
Case nD/nD0 nNe/nD0 IRE [MA]

2 3 0.03 0
3 40 0.08 7.3
4 7 0.08 3.7

� The final column shows the runaway currents right
before the dissipation phase.
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Case 2: nNe = 3× 1018 m−3, nD = 3× 1020 m−3 16/ 30

No runaways, but too long CQ time.
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� Plasma remains hot in the centre.

� Due to the temperature drop at the edge, a strong electric field is induced→
additional Ohmic heating.

� Peak in the temperature close to the boundary between the hot and cold regions.



Case 2: nNe = 3× 1018 m−3, nD = 3× 1020 m−3 17/ 30

� Equilibrium temperature around 200 eV.
� Inner part of the plasma hot→ very

long CQ time.
� High temperature→ weak induced

electric field→ negligible RE
conversion.
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Case 3: nNe = 8× 1018 m−3, nD = 4× 1021 m−3 18/ 30
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� Radiative losses are strong, resulting in very low temperatures.

� The boundary between the two regions (5 eV and 1 eV) moves radially inward.

� Recombination→ higher avalanche growth rate→ large RE generation in the outer part of the plasma.

� The Ohmic current remaining in the more central part diffuses outward→ a significant induced electric
field is sustained in the cold region.

� Large RE conversion with an off-axis radial density profile.



Case 3: nNe = 8× 1018 m−3, nD = 4× 1021 m−3 19/ 30

� Large amount of deuterium leads to an
overall enhancement of the radiative
losses.

� Ionization energy loss matters
(difference between solid black and
green dash-dotted lines).

� Equilibrium temperature is shifted from
a few eV down to only about 1 eV.
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Case 4: nNe = 8× 1018 m−3, nD = 7× 1020 m−3 20/ 30
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� Deuterium density is not high enough to result in temperatures low enough to make
the deuterium recombine.

� But it is sufficiently high to dampen the avalanche, at least partially.



Case 4: nNe = 8× 1018 m−3, nD = 7× 1020 m−3 21/ 30

� Compromise:
I injected densities are sufficiently

large to avoid an equilibrium at
high temperatures

I but not too large, such that
equilibrium temperature does not
drop too close to 1 eV.

� Acceptable CQ time.
� Runaway current lower than previous

case.
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Current evolution 22/ 30
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Effect of opacity 23/ 30

Plasma was assumed to be transparent to radiative losses.

� But plasmas at low temperature and high density
(such as Case 3) are opaque to the Lyman lines
of hydrogen isotopes.

� Estimate the effect by considering the extreme
case, when all the deuterium radiation is trapped.

� If only deuterium line radiation is trapped, the
runaway current is reduced from 7.3 MA to 6 MA.

� Trapping also all the ionization radiation in the
plasma leads to 2.7 MA.



Transport of neutral particles 24/ 30

� If a fraction of the deuterium
recombines, it may leave the
plasma.

� Estimate the effect by removing their
effect on radiation losses and
runaway generation.

� The cold region in Case 3 will have
less runaways, and the
non-monotonic behaviour observed
previously is missing.

� The resulting runaway current is
similar to a case with a lower
amount of injected deuterium.



Non-uniform density deposition 25/ 30

Density profiles were varied from hollow to peaked.
n ∝ 1 + c1 tanh (0.5(r/a− 0.5)).
� negative c1: density peaked at the centre

� positive c1: density peaked at the edge

Total runaway current and CQ time are insensitive to the density profile if the number of injected
atoms is constant.
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Seed runaways 26/ 30

� Dreicer seed is negligible.
� Tritium seed decreases with increasing impurity content, due to the shorter CQ times

and the increased critical energy.
� Compton seed increases with increasing impurity content, due to the increased

number of target electrons available for Compton scattering.
� Tritium + Compton→ a few amperes of seed current is obtained almost

independently of the injected amount of material.



Importance of remnant hot-tail seed 27/ 30

� Omission of hot-tail seed is motivated
with radial losses due to the breakup of
magnetic surfaces during the thermal
quench.

� Maximum runaway current depends
logarithmically on the seed.

� A seed current of a µA gives 1 MA final
runaway current even in Case 4.

Maximum runaway current as function of seed current

for Case 1, 3 and 4 (assuming a flat seed profile).



DD operation, initial current 10 MA 28/ 30

� No tritium decay or Compton
sources.

� Only Dreicer: regions in the
parameter space without large
runaway currents



DD operation, initial current 10 MA 29/ 30

0.5 A remnant hot-tail seed is needed for
a runaway current of 1 MA in Case 4.
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� In the presence of partially ionized impurities, avalanche gain is higher than
previously expected.

� If losses due to magnetic perturbations are neglected, impurity injection leads to high
runaway currents in ITER, even if it is combined with deuterium injection.

� Large amount of injected material→ low temperatures→ recombination→ high
ntot

e /ne → large avalanche growth rate.
� Final runaway current is logarithmically weak function of seed.
� Runaway current and CQ time are fairly insensitive to the details of the density profile

of the injected material (unless it peaks at the edge).
� Important to clarify details of the thermal quench, including hot-tail generation and

effect of losses due to perturbations→ see O Embreus’ talk


