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• US DOE grants used for code validation & close collaboration with experiment

– GA Theory (DE-FG02-95ER54309) and DIII-D (DE-FC02-04ER54698)

– CTTS SciDAC for MHD modeling (DE-SC0018109) 

– JET/KSTAR Disruption Mitigation Solution (DE-SC0020299)

• EUROfusion Enabling Research project for JOREK code development and 

validation

• National Energy Research Scientific Computing Center for high-performance 

computing

Many Grants Provide Opportunities of Synergistic Research
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Studying of Disruption Dynamics and Mitigation Requires 
Multiphysics Models

• Simulations validated against experiments are required 
to project mitigation techniques to future devices

• Integrated model is required to capture all relevant 
physics
• Magnetohydrodynamics (MHD) for macroscopic evolution 

of disruption dynamics
• Atomic physics for impurity ionization/radiation
• Drift-kinetics for runaway-electron (RE) evolution

• Disparate spatial and temporal scales make numerical 
modeling particularly challenging

• M3D-C11, NIMROD2,3, and JOREK4,5 are rising to this 
challenge
• Different physics and numerical model provide robust 

verification opportunities
• Multiple code permit parallel research efforts

DIII-D shattered pellet injection (SPI)
D. Shiraki, IAEA presentation 2016

SPI

1S. C. Jardin, et al., Comput. Sci. Discovery 5, 014002 (2012)
2C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)
3C. Sovinec & J. King, J. Comput. Phys. 229, 5803 (2010)
4G.T.A. Huysmans & O. Czarny, Nucl. Fusion 47, 659 (2007)
5O. Czarny & G. Huysmans, J. Comput. Phys. 227, 7423 (2008)
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• Overview of code models
• Verification studies

– M3D-C1 & NIMROD show quantitative agreement in 2D, nonlinear benchmark, 
JOREK differences likely due to its impurity model

– M3D-C1 & NIMROD 3D nonlinear benchmarks
• Axisymmetric, core deposition shows stable thermal quench, 

instability-induced current quench with large current spike
• Injected, ablating pellet benchmark is underway

– NIMROD viscosity & deposition scans show expected thermal-quench dependence
• Validation studies

– Initial M3D-C1 pellet-composition study shows qualitative agreement with DIII-D data, 
NIMROD shows quantitative agreement with experiment

– M3D-C1 and NIMROD have begun modeling of recent JET & KSTAR experiments
– JOREK shattered-pellet-injection modeling shows MHD-driven thermal quench

Outline and Major Results
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• Both codes solve full, nonlinear, 3D extended MHD equations
– M3D-C1 uses a complete C1 finite-element representation
– NIMROD uses finite elements in poloidal plane and Fourier modes toroidally

• Both have been coupled to the KPRAD1 impurity model
– Low-density, coronal non-equilibrium model based on ADPAK rate coefficients
– Impurity & electron densities evolve according to ionization and recombination

– Thermal energy lost from plasma due to ionization and radiation
– NIMROD uses single-temperature, M3D-C1 uses single or two-temperature

M3D-C1 and NIMROD Extended-MHD Solvers are Coupled to 
Impurity Ionization/Radiation Models

1D.G. Whyte, et al., Proc. of the 24th Euro. Conf. on Controlled Fusion and 
Plasma Physics, Berchtesgaden, Germany, 1997, Vol. 21A, p. 1137. 

@nz

@t
+r · (nzv) = r · (Drnz) + Iz�1nz�1 � (Iz +Rz)nz +Rz+1nz+1 + Sz
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• JOREK solves 3D nonlinear extended MHD equations 
[Huysmans and Czarny, NF 2007; Overview article: Hoelzl et al., in preparation; https://www.jorek.eu/]

• 2D C1 finite elements poloidally & Fourier modes toroidally
• Fully implicit [Czarny and Huysmans, JCP 2008]

• Free-boundary simulations with JOREK-STARWALL [Hoelzl et al., JPCS 2012]

• Typically run in reduced MHD (including all simulations here)
• Various extensions permit disruption mitigation modeling

• Neutrals [Fil et al., PoP 2015]

• Shattered-pellet injection [Hu et al., NF 2018]

• Impurities under coronal equilibrium [Hu et al., in preparation]

• Impurities beyond coronal equilibrium is under development [Wieschollek et al.]

• Runaway Electrons
• Fluid model [Bandaru et al., Phys. Rev. E 2019]
• Test particles [Sommariva et al., NF 2017 & 2018]

JOREK Extended-MHD Solver Coupled to Coronal-Equilibrium 
Impurity Model 

https://www.jorek.eu/
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Axisymmetric Benchmark Between M3D-C1 and NIMROD was 
Highly Successful (Lyons, Kim)

�B.C. Lyons et al.,  PPCF 61, 6 (2019).
doi.org/10.1088/1361-6587/ab0e42
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• 2D, nonlinear modeling of argon injection in 

DIII-D core (See pub. for details�)
• Excellent agreement found between M3D-C1 

and NIMROD
– Thermal quench agreed quantitatively
– Current quench caused by contact with 

boundary shows qualitative agreement
– Quantitative differences likely caused by 

disparate boundary conditions

• On-axis impurities induce inside-out thermal 
quench & hollowing of current

• After thermal quench, plasma forms 
expanding shell with core turbulence

https://doi.org/10.1088/1361-6587/ab0e42
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• JOREK reduced-MHD simulation shows similar 
thermal quench timescale, though a bit slower 

• Similar initial rate of density increase, but 
decreases in JOREK after thermal collapse

• Loss power rises more slowly in JOREK initially
• Likely due to crucial difference in impurity 

models
– JOREK assume impurity charge states remain in 

coronal equilibrium
– M3D-C1 & NIMROD use a coronal model, but 

allow each charge state to evolve in time
– Motivates ongoing upgrade of JOREK impurity, 

and future work to move to collisional-radiative 
model in M3D-C1

JOREK Modeling Shows Quantitative Differences Likely Due to 
Coronal-Equilibrium Impurity Model (Nardon)
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JOREK Also Shows Inside-Out Thermal Quench and Evolving 
Plasma Sheet, but Differs Qualitatively (Nardon)
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• Overview of code models
• Verification studies

– M3D-C1 & NIMROD show quantitative agreement in 2D, nonlinear benchmark, 
JOREK differences likely due to its impurity model

– M3D-C1 & NIMROD 3D nonlinear benchmarks
• Axisymmetric, core deposition shows stable thermal quench, 

instability-induced current quench with large current spike
• Injected, ablating pellet benchmark is underway

– NIMROD viscosity & deposition scans show expected thermal-quench dependence
• Validation studies

– Initial M3D-C1 pellet-composition study shows qualitative agreement with DIII-D data, 
NIMROD shows quantitative agreement with experiment

– M3D-C1 and NIMROD have begun modeling of recent JET & KSTAR experiments
– JOREK shattered-pellet-injection modeling shows MHD-driven thermal quench

Outline and Major Results
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• Plasma stays axisymmetric through 0.65 ms, 
identical to 2D benchmark

• Good qualitative agreement between 
codes during current quench
– Rapid current quench
– Plasma sheet goes unstable after thermal 

quench
– Mixing increases radiation & ohmic heating

• Prominent current spike*
– 120-150 kA among largest seen in 3D, 

nonlinear MHD simulations
– NIMROD spike slightly delayed and current 

quench is faster
– Sensitivity to resistivity and boundary 

temperature under investigation

3D Modeling of Axisymmetric Benchmark Shows Stable Thermal 
Quench, Instability-Induced Current Quench (Lyons, Kim)
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*Letter on M3D-C1 current spike in preparation
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• DIII-D 160606 @ 2990 ms: 0.7 MJ, 1.28 MA
• 3D nonlinear MHD with fixed boundary 

and single-temperature equation
• Pellet parameters

– 3 mm radius, pure neon 
– 5 cm poloidal and 2.4 m toroidal 

deposition half-width
– 200 m/s with realistic trajectory

• First results have obvious discrepancies
– Early, quantitative agreement in number 

of electrons (i.e., ablation and ionization)
– Both show strong MHD at ~1.8 ms, but 

n=3 in M3D-C1 and n=5 in NIMROD
– Induces rapid thermal quench in M3D-C1, 

but not in NIMROD
• Work to improve match will continue in 

earnest in near future

New 3D Benchmark between M3D-C1 & NIMROD with Injected, 
Ablating Pellet is Underway (Lyons, Kim)
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of electrons (i.e., ablation and ionization)
– Both show strong MHD at ~1.8 ms, but 

n=3 in M3D-C1 and n=5 in NIMROD
– Induces rapid thermal quench in M3D-C1, 

but not in NIMROD
• Work to improve match will continue in 

earnest in near future

New 3D Benchmark between M3D-C1 & NIMROD with Injected, 
Ablating Pellet is Underway (Lyons, Kim)
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• Overview of code models
• Verification studies

– M3D-C1 & NIMROD show quantitative agreement in 2D, nonlinear benchmark, 
JOREK differences likely due to its impurity model

– M3D-C1 & NIMROD 3D nonlinear benchmarks
• Axisymmetric, core deposition shows stable thermal quench, 

instability-induced current quench with large current spike
• Injected, ablating pellet benchmark is underway

– NIMROD viscosity & deposition scans show expected thermal-quench dependence
• Validation studies

– Initial M3D-C1 pellet-composition study shows qualitative agreement with DIII-D data, 
NIMROD shows quantitative agreement with experiment

– M3D-C1 and NIMROD have begun modeling of recent JET & KSTAR experiments
– JOREK shattered-pellet-injection modeling shows MHD-driven thermal quench

Outline and Major Results
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• Decreasing viscosity accelerates 
dynamics 
– Stronger linear response 

[(2,1),(3,2)] driven by ablating 
fragments 

– Earlier nonlinear saturation but 
not necessarily larger amplitude 

• Higher viscosity suppresses MHD 
activity, decreasing radiation

NIMROD Modeling Shows Lower Viscosity Leads to Shorter 
Thermal Quench due to Stronger Linear MHD Response (Kim)

viscosity d�/2⇡ ⌧TQ (ms) P peak
rad (GW) Erad/Eth assim.

500 m2/s 0.05 1.451 0.55 45% 34%
250 m2/s 0.05 1.379 0.64 47% 38%
100 m2/s 0.05 1.316 0.64 44% 41%

100 m2/s

250 m2/s

500 m2/s
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NIMROD Modeling Shows Broader Toroidal Deposition Causes 
Shallower Penetration but Higher Assimilation (Kim)

• Overall, broader deposition causes
– Shorter thermal quench
– Larger fraction of pellet ablated

• Trends within broader deposition cases are less consistent, possibly due to 
nonlinear mixing from crossing of more flux tubes

viscosity d�/2⇡ ⌧TQ (ms) P peak
rad (GW) Erad/Eth assim.

500 m2/s 0.05 1.451 0.55 45% 34%
250 m2/s 0.05 1.379 0.64 47% 38%
100 m2/s 0.05 1.316 0.64 44% 41%
500 m2/s 0.10 1.478 0.50 40% 42%
250 m2/s 0.10 1.268 1.46 58% 66%
100 m2/s 0.10 1.227 0.93 45% 61%
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• Overview of code models
• Verification studies

– M3D-C1 & NIMROD show quantitative agreement in 2D, nonlinear benchmark, 
JOREK differences likely due to its impurity model

– M3D-C1 & NIMROD 3D nonlinear benchmarks
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– NIMROD viscosity & deposition scans show expected thermal-quench dependence
• Validation studies

– Initial M3D-C1 pellet-composition study shows qualitative agreement with DIII-D data, 
NIMROD shows quantitative agreement with experiment
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M3D-C1 Validation with DIII-D Pellet Composition Shows Thermal 
Quench for Pure Neon Pellet Faster than Mixed Ne-D2 (Lyons)

Thermal Energy (MJ)

Loss Power 
(GW)

Change in # of 
Electrons (1021)

• Simulations
– DIII-D 160606
– Single, monolithic pellet
– Realistic velocity
– Half-widths: 10 cm pol.

3 m tor.
• Radiative losses several 

times higher with pure 
neon than 10:1 D2:Ne

• Trends are consistent 
with NIMROD modeling 
and experiment
– NIMROD agrees well 

with experiment
– Increased resolution 

improved results from 
publication*
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M3D-C1 Validation with DIII-D Pellet Composition Shows Thermal 
Quench for Pure Neon Pellet Faster than Mixed Ne-D2 (Lyons)

NIMROD
Simulations

*Updated from C.C. Kim et al., 
Phys. Plasmas 26, 042510 (2019)

DIII-D
Data

Thermal Energy (MJ)

Loss Power 
(GW)

Change in # of 
Electrons (1021)

• Simulations
– DIII-D 160606
– Single, monolithic pellet
– Realistic velocity
– Half-widths: 10 cm pol.

3 m tor.
• Radiative losses several 

times higher with pure 
neon than 10:1 D2:Ne

• Trends are consistent 
with NIMROD modeling 
and experiment
– NIMROD agrees well 

with experiment
– Increased resolution 

improved results from 
publication*

Pure Ne

D2 = 10*Ne

D2 = 100*Ne

D. Shiraki et al., Phys. Plasmas 
23 (6), 062516
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Pure Neon Pellet Induces Dominant n=1 Mode, Mixed Pellet 
Remains More Quiescent (Lyons)

Pure Ne D2/Ne = 10

• Preliminary results: to be rerun with 
– Higher toroidal resolution
– Newer, more stable code version 

• Pure neon pellet drives linear instability
• Both go numerically unstable when plasma highly non-axisymmetric 
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• Modeling component of grant has several objectives
– Interpret recent mitigation experiments

• JET, particular high thermal energy and radiation fraction/asymmetry
• KSTAR, particularly dual, symmetric shattered-pellet injection

– Develop cross-machine database to inform ITER disruption-mitigation system
– Make predictions for additional experiments

• Equilibria reconstructed with kinetic profiles acquired for recent experiments

New International Collaboration will Validate M3D-C1 and 
NIMROD against Recent JET and KSTAR SPI Experiments
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Initial Modeling of JET & KSTAR is Underway (McClenaghan, Lyons)

• JET modeling of 95707
– Initial 2D NIMROD modeling shows 

outside-in thermal quench driven 
by line radiation

– 3D M3D-C1 nonlinear modeling 
shows quiescent, radiation-driven 
thermal quench
• Two different toroidal depositions, 

but varied diffusivity parameters
• No significant MHD activity 

(beyond sawteeth) before 
numerical instability

• M3D-C1 2D KSTAR modeling 
underway, 3D & NIMROD to follow
– Dual injector simulations planned
– Multi-injector simulations 

demonstrated w/ NIMROD in DIII-D
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NIMROD Dual Injection in DIII-D
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• Overview of code models
• Verification studies

– M3D-C1 & NIMROD show quantitative agreement in 2D, nonlinear benchmark, 
JOREK differences likely due to its impurity model

– M3D-C1 & NIMROD 3D nonlinear benchmarks
• Axisymmetric, core deposition shows stable thermal quench, 

instability-induced current quench with large current spike
• Injected, ablating pellet benchmark is underway

– NIMROD viscosity & deposition scans show expected thermal-quench dependence
• Validation studies

– Initial M3D-C1 pellet-composition study shows qualitative agreement with DIII-D data, 
NIMROD shows quantitative agreement with experiment

– M3D-C1 and NIMROD have begun modeling of recent JET & KSTAR experiments
– JOREK shattered-pellet-injection modeling shows MHD-driven thermal quench

Outline and Major Results
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• Shot 89800 
– From earlier MGI experiment
– Used for current Scenario 1

• Pellet size and composition under 
active investigation
– 4.5 mm vs 8 mm
– Pure Ne vs mixed Ne/D2

• Example of 4.5 mm pure Ne
– MHD activity induced by n=0 

current contraction and helical 
cooling on rational surfaces

– Stochasticazation causes thermal 
quench, but core remains at low 
density (potentially bad for 
runaway suppression)

• Synthetic diagnostics are being 
implemented for experimental 
validation

JOREK Modeling of JET Reference Scenario 1 Discharge Show 
MHD Driven Thermal Quench (Bonfiglio)

ne

Poincaré plots
q=1, 2, 3, ¥

Te

1.2 ms 1.5          1.65         1.8           1.95

3 keV

6e20 m-3
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• M3D-C1 and NIMROD
– Complete 3D benchmark this year
– Extensive validation with experiment

• DIII-D: dual SPI, thermal & magnetic energy 
• JET: high thermal energy and radiation fraction/asymmetry
• KSTAR: dual, symmetric SPI

– Model upgrades
• Collisional-radiative impurity model
• Coupling to detailed pellet ablation code

• JOREK
– Use synthetic diagnostics for JET validation 
– Upgrade to impurity model (ongoing) to complete 2D benchmark

• All codes will make predictions for efficacy of ITER disruption-mitigation system
– Cross-machine, cross-code database will provide robust understanding of SPI dynamics
– High-fidelity, 3D nonlinear modeling of relevant ITER scenarios 

Verification, Validation, and Predictive Modeling Will Continue
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Additional slides



50 Lyons IAEA Disruptions TM 2020

• Three-dimensional toroidal geometry
• Full (not reduced) MHD
• Solves for potential and stream-function 

fields for ! & " (# $ % = ' intrinsically)
• Includes resistivity, density diffusivity, 

viscosity, & thermal conductivity
• Two-fluid effects (optional)
• 3D high-order finite elements

• Unstructured, triangular mesh in 
poloidal plane

• Structured toroidally, but can pack 
planes

• Can solve with finite-thickness resistive 
wall in domain**

M3D-C1* Solves the Extended-MHD Equations

*S. C. Jardin, et al., Comput. Sci. Discovery 5, 014002 (2012).
**N.M. Ferraro, et al. ,Phys Plasma23  056114 (2016).

Vacuum  (J=0)

Plasma 
(X-MHD)

RW ( E = hW J )
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M3D-C1 Solves the Extended-MHD Equations
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• Practical, analytic expression fit to 
more complex ablation model (Parks)

is fitting function, depending on molar 
fraction of D2, 

• M3D-C1 implementation
– Advance pellet location in time
– Calculate number of particles ablated 

and pellet-surface recession at each 
time step

– Deposit main ion and/or impurities onto 
arbitrary spatial distribution (e.g. 2D or 
3D Gaussian)

Ablation model for Ne-D2 pellets implemented in M3D-C1

G (g/s) = � (X)

✓
Te

2000 eV

◆5/3 ⇣ rp
0.2 cm

⌘4/3 ⇣ ne

1014 cm�3

⌘1/3

�
X

Impurity Density


