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Data-driven disruption prediction requires large labeled databases
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A. Pau et al 2019 Nucl. Fusion 59 106017 (doi)

Typical Workflow:

https://doi.org/10.1088/1741-4326/ab2ea9
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Data-driven disruption prediction requires large labeled databases
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A. Pau et al 2019 Nucl. Fusion 59 106017 (doi)

∼ 103 − 104 shots

Tedious!

Typical Workflow:

https://doi.org/10.1088/1741-4326/ab2ea9
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Labeled disruption precursor event chains can further understanding

• Built dataset of manually labeled 
disruption precursors

– ∼ 300 discharges from DIII-D 2015 & 2016

– Recorded start time and type of each 

event

• Inspired by study of disruption causes 
on JET1 that labeled 2309 discharges!

– Later extended2 to complement & 

interpret a machine-learning disruption 

predictor
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DIII-D Shot 161238

1 P.C. de Vries et al 2011 Nucl. Fusion 51 053018 (doi) 
2 A. Pau et al 2019 Nucl. Fusion 59 106017 (doi)

https://doi.org/10.1088/0029-5515/51/5/053018
https://doi.org/10.1088/1741-4326/ab2ea9
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Semi-supervised learning on time-sequences helps detect/label events

• Sample time sequences from each 
shot (endpoints are shown) with…

– Duration > event timescale

– # of steps > event resolution

• Choose 𝑵 signals to identify event. 

Each sequence 𝒙𝒊 now a point in 

high-D space:

• Dataset was standardized (scaled & 
offset so that 𝝁 = 𝟎, 𝝈 = 𝟏)
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H-L back transition detection

Ԧ𝑥𝑖 ∈ ℝ𝑁⋅(# 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠)
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Semi-supervised learning on time-sequences helps detect/label events

• Assign ℓ sequences from this shot a class:

– Positive (𝑦𝑖 = 1) if it overlaps with event

– Negative (𝑦𝑖 = −1) otherwise

• Assign a placeholder class to 
𝒖 sequences from unlabeled shots

– Unobserved (𝑦𝑖 = 0)

• Goal of Semi-Supervised Learning:

– Infer 𝑌𝑈 using all Ԧ𝑥𝑖 ∈ 𝑋 and 𝑌𝐿, typically for 

cases where most data unlabeled  (ℓ ≪ 𝑢)
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DIII-D Shot 161238

𝑌𝐿 = 𝑦1, ⋯ , 𝑦ℓ

𝑌𝑈 = 𝑦ℓ+1, ⋯ , 𝑦ℓ+𝑢
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Label Propagation Algorithm

• Key Assumption: data points that lie close 
together have similar labels

1. Visualize dataset as fully connected graph

– Nodes are data points with values 0 ≤ 𝑌𝑖 ≤ 1
representing probability Ԧ𝑥𝑖 is in positive class

– Edges are weighted by Euclidean proximity

2. Algorithm iteratively updates 𝒀 with 

transition matrix 𝑻

3. On each iteration, reset (clamp) originally 
labeled data 𝒀𝟏, … , 𝒀ℓ to original value
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𝑇𝑖𝑗 = 𝑃 𝑗 → 𝑖 ∝ 𝑤𝑖𝑗

Ԧ𝑥𝑖

Ԧ𝑥𝑗𝑤𝑖𝑗 = 𝑓( Ԧ𝑥𝑖 , Ԧ𝑥𝑗)

1 X. Zhu and Z. Ghahramani 2002 Technical Report CMU-CALD-02-107 (doi) 

http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf
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Applied label spreading 1 to detect H-L back transitions

• Event Prevalence: ∼ 𝟕𝟒% (𝟐𝟎𝟔/𝟐𝟕𝟕) of shots

• 7 signals used, 6 time steps/sequence (42-D)

• Initially labeled 1.5% of shots

– Example shot 161238, along with 2 others with 

H-L transition & 1 without

• Detection interval highlighted

– Remember, sequences depicted by endpoints

• ∼ 𝟗𝟏% true positive rate (TPR)

– Fraction of shots w/ H-L back transition that had 

a successful detection

• ∼ 𝟐𝟓% false positive rate (FPR)

– High-end estimate (for nuance, see extra slides)
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1 D. Zhou et al 2004 Learning with local and global consistency (doi)

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219


2007-11657/9

Applied same algorithm to detect locked modes with rotating precursors
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𝑇𝑃𝑅 = 86%

𝐹𝑃𝑅 = 15%

• Prevalence: ∼ 𝟔𝟓% (𝟏𝟖𝟎/𝟐𝟕𝟓) of shots

• Started with only 1 shot labeled (161048) and searched for marginal detections 

DIII-D Shot 161048 DIII-D Shot 163020
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Iterative labeling method shows performance increase as shots added
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• Then, added the ‘marginal’ shot (163020) to the set of initial labels and retrained algorithm

1st iteration 2nd iteration 9th iteration

𝑇𝑃𝑅 = 86%

𝐹𝑃𝑅 = 15%

𝑇𝑃𝑅 = 92%

𝐹𝑃𝑅 = 16%

𝑇𝑃𝑅 = 94%

𝐹𝑃𝑅 = 9%

DIII-D #164375 DIII-D #164375 DIII-D #164375
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Application to core radiative collapses, a low prevalence event
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• Prevalence: ∼ 𝟖% (𝟐𝟓/𝟐𝟗𝟒) of shots

• 3 signals (18-D space)

• 3 initial labels (2 with event, 1 without)

• Restricting dataset to shots w/ detections 
increases event prevalence by 𝟓 times!

– Conservative estimate (see extra slides)

• Can also be used as an experimental 

search engine (see extra slides)

𝑇𝑃𝑅 = 68% (15/22 shots)

𝐹𝑃𝑅 = 9% (24/269 shots)
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Summary

• Event databases can contribute to progress in disruption avoidance

• Reliable detections of multiple events demonstrated using the same algorithm

– Success with H-L transitions, initially rotating locked modes, and core radiative collapses

– Suggests extension to arbitrary events is promising

• Label spreading shows reasonable performance with little initial information

– All applications shown used only 1-5% of samples as initial labels

• Performance increase observed as labeled examples are added

– “Pull up by the bootstraps” dataset construction method

• Future work…

– Test other kernel functions and compare performance (see extra slides)

– Finish developing OMFIT1 module to share work & apply to arbitrary events

• In progress (see extra slides for details)

– Extend this analysis to a larger dataset to build an events database for avoidance studies
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1 O. Meneghini et al 2015 Nucl. Fusion, 55, 083008 (2015) (doi)

https://doi.org/10.1088/0029-5515/55/8/083008
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Extra Slides
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Label Spreading Algorithm – how is it different?

• Uses a modified transition step with a modified clamping procedure1

– Given each edge weight 𝑤𝑖𝑗, the transition matrix 𝑇 has elements

– Let 𝑌∗ be the initial probability vector 𝑌 (either 1 for manually labeled, or 0 otherwise). At 

iteration 𝑡, update 𝑌 according to the rule:

– Here, 𝛼 is called the clamping factor. Whereas label propagation performs a hard reset, or 

clamping, on each iteration, label spreading has a soft clamping effect. 

• 𝛼 is chosen by the user. It can be changed to yield a softer clamping effect, allowing the 

algorithm to change the weight of the true ground labeled data to some degree2
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𝑇𝑖𝑗 =
𝑤𝑖𝑗

σ𝑘𝑤𝑖𝑘
1/2 σ𝑘𝑤𝑗𝑘

1/2

𝑌 𝑡 + 1 = 𝛼𝑇𝑌 𝑡 + 1 − 𝛼 𝑌∗ [0 < 𝛼 < 1]

1 D. Zhou et al 2004 Learning with local and global consistency (doi)
2 https://scikit-learn.org/stable/modules/label_propagation.html

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219
https://scikit-learn.org/stable/modules/label_propagation.html
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Performance is Sensitive to Kernel, Less Sensitive to Clamping Factor (𝜶)

• Performances increases with decreasing kernel width until hitting a plateau

• H-L performance shown, but same trend holds for other events
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Radial Basis Function

𝑓 Ԧ𝑥𝑖 , Ԧ𝑥𝑗 = exp −𝛾 Ԧ𝑥𝑖 − Ԧ𝑥𝑗
2

True Positive Rate

False Positive Rate
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Can use event detection to find experiments with common themes & dynamics
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• 57 runs from 2015/2016 campaigns with 

disruptions in core radiative collapse dataset

– Sorted by performance (best/worst, left/right)

• Correlation b/w experiment & event found

– Impurity accumulation, high-Z divertor, ELM 

control associated w/ core radiative collapse

0    Isotope scaling L-H and H-L power thresholds

1 Impact of High Power AT Operation … using W Tiles

2 End of Metal tiles campaign tasks

3    High Frequency D2 Pellet ELM Pacing

4    Plasma Startup and Systems Checkout - Day 2

5    Detachment onset at the inner and outer divertor

6    Impurity Granule Injector and D2 Fueling

7    Zonal Flow Damping in L-H Transitions

8    Effect of RMP ELM Control on W Divertor Erosion...

Best Performing Run Days

Metal Ring Campaign ELM pacing Initial Label

These runs have no detections

Red marks designate runs from 
which initial labels are drawn
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What went wrong? Common causes of missed detections & false positives

• Early/late detections can cause missed warnings (classified as false negatives here)

• Several false positives due to strict event definitions (inflates FPR estimate)

– Better features (a binary threshold signal for 𝑃𝑟𝑎𝑑 > 𝑃𝑖𝑛𝑝𝑢𝑡, in the case below) can help
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Late Detection (H-L transition) False Positive (core radiative collapse)
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Some other things to worry about …

• Curse of Dimensionality

– Recall each sequence Ԧ𝑥𝑖 lives in (𝑁 × 𝑇)-dimensional space, where 𝑁 is the number of 

input signals and 𝑇 is the number of times steps per sequence

– Applications in this presentation were in 42, 24, and 18 dimensional spaces 

– Adding time resolution or signals could eventually make the problem intractable

• Aliasing

– Number of time steps 𝑇 should cover typical frequency of each input signal

– For this application, several signals (𝑃𝑖𝑛𝑝𝑢𝑡, 𝐵𝑟
𝑛=1) were filtered

• Kernels

– For this application, the radial basis function was used to find neighboring sequences

– Other kernel functions may be better suited (think k-nearest neighbors, KNN)

KJ Montes/IAEA TM on Disruptions & Mitigation/July 2020



2007-11657/19

OMFIT Module in Development for Arbitrary Event Detection

• Module workflow facilitates using label propagation to quickly build a database

– label events, execute label propagation runs & parameter scans, and validate results
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User can 

import 

arbitrary 

dataset for 

arbitrary event

Generate 

customized 

label prop 

graph & view 

performance 

results

Choose 

shots to 

initially 

label

Add/remove 

verified 

events 

to/from the 

database

View chain 

of events 

for any shot

Change threshold for more 

confident predictions

Compare 

predictions 

from many 

versions of 

algorithm
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor

any of their employees, makes any warranty, express or implied, or assumes any legal

liability or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents that its use would

not infringe privately owned rights. Reference herein to any specific commercial

product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring

by the United States Government or any agency thereof. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States

Government or any agency thereof.


