

# Real-time applications of Electron Cyclotron Emission interferometry for disruption avoidance at JET

M. Fontana, C. D. Challis, N. J. Conway, R. Felton, A. Goodyear, C. Hogben, A. Peacock, L. Piron, S. Schmuck





This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014 - 2018 and 2019 - 2020 under grant agreement No 633053. The views and opinions expressed herein do not necessar. Is reflect those of the European Commission.

#### Index



- Motivation
- Diagnostic
- First applications: plasma ramp-up
  - Peakedness metric definition
  - Application to experiments
- Future applications: plasma termination
  - Edge cooling metric definition
  - Tests on plasma terminations
- Conclusions









 $T_e [eV]$ 

Locked mode







4

Typical sequence leading to disruptions during Ohmic ramp phase in high  $\beta_N$  D plasmas



Typical sequence leading to disruptions during Ohmic ramp phase in high  $\beta_N$  D plasmas



Typical sequence leading to disruptions during Ohmic ramp phase in high  $\beta_N$  D plasmas



#### Index



- Motivation
- Diagnostic
- First applications: plasma ramp-up
  - Peakedness metric definition
  - Application to experiments
- Future applications: plasma termination
  - Edge cooling metric definition
  - Tests on plasma terminations
- Conclusions







## ECE interferometers at JET



#### JET ECE interferometers

[S. Schmuck, RSI, 2016]

- Absolutely calibrated T<sub>e</sub> profiles covering [2.5 3.9] m
- Time resolution ~60 Hz (~16 ms/profile)
- X-mode and O-mode polarizations on two LOS.
- Used for ECE radiometer calibration



# ECE interferometers at JET





#### Index



- Motivation
- Diagnostic

#### First applications: plasma ramp-up

- Peakedness metric definition
- Application to experiments
- Future applications: plasma termination
  - Edge cooling metric definition
  - Tests on plasma terminations
- Conclusions







## Monitor T<sub>e</sub> peaking: a simple, robust metric





$$T_{Edge} = (T_{EdgeL} + T_{EdgeR})/2$$
$$P_1 = (T_{Core} - T_{Edge})/T_{Edge}$$

 $P_1>0$  when profile is peaked  $P_1<0$  when profile is hollow

Radial windows can be optimized for specific scenarios

# $P_1$ correlates with $T_e$ peaking



Discharges from 2015  $M_{eff}$  scan

Quantities averaged over [1.5, 3.5] s



12

## P<sub>1</sub> correlates with disruptions in ohmic ramp phase





## P<sub>1</sub> correlates with disruptions in ohmic ramp phase





## High $\beta_N$ scenario ramp-up: disruption





## High $\beta_N$ scenario ramp-up: safe termination





#### Index



- Motivation
- Diagnostic
- First applications: plasma ramp-up
  - Peakedness metric definition
  - Application to experiments

#### Future applications: plasma termination

- Edge cooling metric definition
- Tests on plasma terminations
- Conclusions







## Outer core logarithmic gradient as metric for edge cooling







Edge cooling is one of the typical steps in a disruption

#### Other applications: metric for edge cooling





## Other applications: plasma terminations



- P1 and outer core gradient were compared to the existing alarms used at JET in plasma terminations.
- They identify most disruptions with variable advance.



## Other applications: plasma terminations



P1 and outer core gradient were compared to the existing alarms used at JET in plasma terminations.

They identify most disruptions with variable advance.

#### In several cases, earlier than current alarms



# Future applications: combination with radiation metrics



Interesting results were obtained combining with radiation metrics based on bolometry tomographic inversion:  $P_{rad,core} / (P_{RF}*P_1)$  and  $P_{rad,out} / P_{tot}$ Very good advance with respect to existing alarms.



# Future applications: combination with radiation metrics



- Interesting results were obtained combining with radiation metrics based on bolometry tomographic inversion:  $P_{rad,core} / (P_{RF}*P_1)$  and  $P_{rad,out} / P_{tot}$ Very good advance with respect to existing alarms.
- Particularly useful to separate core and edge radiation events



#### Conclusions



#### • JET ECE X-mode interferometer now produces T<sub>e</sub> profiles in real time

- First real-time application of ECE interferometers
- Profiles every 16 ms, <1 ms for processing
- Simple, robust definitions for peakedness and outer core gradient metrics

#### • First application: hollowness detection in high $\beta_N$ ramp-up

- Pre-emptively identify duds: avoid running bad pulses and avoid disruptions during current overshoot
- Reliably employed in high  $\beta_N$  pulses since August 2019

#### Other applications: disruption avoidance in baseline scenario termination

• Peakedness gives substantial advance in certain cases. Promising in combination with bolometer tomography [see also D. R. Ferreira talk at this conference]









# Back up slides







#### **Interferometer schematics**











## Fourier transform of interferogram is $T_{rad}(f)$





#### T<sub>a</sub> profiles derive from magnetic reconstruction





#### Interferometer acquisition architecture







#### System description





Center

## RT processing principle











# RT data processing: approximated B field

Each interferogram is isolated and processed separately. ~1 ms processing for each interferogram

Approximation: 
$$B_{approx} = B_{tor}$$

Only **I**<sub>tfc</sub> required as ext. input, no equilibrium reconstruction.

Best results are obtained for low  $I_p/B_{tor}$  pulses. Interesting for current ramp phase





B field approximation: good results during current ramp



Small shift due to magnetic field approximation





#### Small error between approximation and ppf





#### Cutoff/optical depth pose no problem in ramp



Optical depth ( $\tau$ ) > 2 is considered sufficient for  $T_{rad} = T_e$ 

Issues may arise for high density phases before disruptions



36

36

Hybrid pulses at JET: improved confinement wrt IPB98(y,2) scaling

- High  $\beta_N$
- Rely on wide low magnetic shear region in the plasma core at q=1
- q-profile optimized during current ramp-up phase
  - Often ending with a current overshoot
  - Sensitive to main ion mass [C. D. Challis et al, Nuclear Fusion, 2020]
- Sometime present hollow temperature profile during the current ramp-up as a consequence of impurity accumulation.
  - Can cause double tearing modes: terminated by mitigation system, but potential of high current disruptions (>3MA)







#### M18-02 tested the system with success





# Future applications: combination with radiation metrics



Interesting results were obtained using radiation metrics based on bolometry tomographic inversion:  $P_{rad,core}/P_{tot}$  and  $P_{rad,out}/P_{tot}$ Very good advance with respect to existing alarms.

