

Current flows towards the divertor during VDEs at COMPASS

E. Matveeva^{1,2}, F.J. Artola³, J. Havlicek¹, M. Lehnen³, R. Pitts³, R. Roccella³, R. Dejarnac¹, M. Jeřáb¹, D. Šesták¹, P. Bartoň¹, J. Adamek¹, M. Boušek¹, J. Cavalier¹, A. Havranek¹, F. Pova¹, V. Weinzettl¹ and COMPASS team¹

¹ Institute of Plasma Physics of CAS, Prague, Czech republic

²Charles University, Faculty of Mathematics and Physics, Prague, Czech republic

³ITER Organization, 13067-Saint-Paul-lez-Durance, Cedex, France

20-23 July 2020, IAEA Technical Meeting on Plasma Disruptions and their Mitigation

Motivation: Asymmetric Toroidal Eddy Currents

Asymmetric toroidal eddy currents (ATEC)

- [Roccella et al., Nucl. Fusion 56, 2016]
- Plasma touches the wall
- Short-circuit between divertor plates occurs
- Eddy currents flow in the divertor tiles and through the gaps between them

Consequences:

- Force acting on the in-vessel components (vertical current current flowing from the vessel to the tile interacts with the toroidal magnetic field)
- Misinterpretation of magnetic coils measurements (in case they are located behind divertor/limiter structures)

Aim of the experiment:

Test ATEC model using special divertor tiles

Current quench \rightarrow currents in the wall

Inductive:

Toroidal and poloidal currents in the wall

Halo currents:

In plasma: flow along open magnetic field lines In the wall:

path is not restricted by magnetic field

Special divertor tiles

Experiments

- Tile is insulated from the wall inside the VV
- Each tile has 6 measuring segments
- Each segment is connected to the wall outside of the VV
- Current in the segment is measured by Rogowski coil (outside of the VV)
- Focus on LFS segments Left (L) and Right (R) (separated toroidally by gaps) (2,5 mm at tile #1 and 10 mm at tile #2)

Experiments:

- Forced downward disruption (towards divertor tiles)
- 102 dedicated discharges
- Repeat the same plasma parameters $I_p = 300 \text{ kA}$ (with standard and reversed $I_p \text{ a B}_t$)
- The tiles are left in the VV
 as a piggyback experiment

Results

Tile's segments measure:

- Halo current (we assume that it is symmetric for the Left and Right segments)
- Part of the eddy current from neighboring segments

(if there is a short-circuit through the gap)

Grounded segments:

- Tile is insulated from the wall inside the VV
- Segments are connected to the VV (outside of the VV)
- Currents up to 1.5 kA are measured
- LFS and HFS segments have different signs: Halo current enters the VV at HFS and exits at LFS
- Tile #1: Left and right segments' measurements are not symmetric. What is the reason?
- Tile #2: Left and right segments' measurements are symmetric

Results:

Dependence on I_D and B_t direction

Find out the reason behind Tile #1 non-symmetric current flows:
Dependence on I_n and B_t direction is observed

Tile #1 I _{flow}	Standard I_p	Reversed I_p
Standard B _t	left > right	right > left
Reversed B _t	right > left	left > right

Results: Floating mode

Floating segments:

- The Left and Right segments are connected to each other outside of the VV
- There in no connection to the VV
- Currents up to 1 kA are observed
- Current flows depend on I_p and B_t directions

Tile #1	Standard I _p	Reversed I _p
Standard B _t	co-l _p	co-l _p
Reversed B _t	co-l _p	co-l _p
Tile #2	Standard I _p	Reversed I _p
Standard B _t	counter-I _p	counter-l _p

Results: Floating mode

Floating segments:

- Current flows observed in floating mode (up to 1 kA) are comparable to those measured in grounded mode (up to 1.5 kA)
- This is a sign of a shorts-circuit
- It is not clear where does this short-circuit occur. Possible options:
 - 1) through the gaps

2) through the open magnetic field linen going to some other part of the vessel \rightarrow short-circuit through the vessel

Results: Disconnected mode

One segments is disconnected, its neighbour is connected to the VV:

- Does disconnection of one segment affect its neighbor? Could be a sign of eddy current flowing in the disconnected segment and transferred to its neighboring segment.
- Disconnection of one segment leads to slight increase of magnitude in the other segment. The effect is observed for both tile #1 and tile #2, but more statistics is needed

Hypothesis: Combination of Halo and eddy currents

Assumptions:

- Halo current to left and right segments is symmetric

COMPASS

- Gaps separating the segments toroidally are short-circuited (support ATEC model)

Measurements:

- Halo currents depend on B_t direction, but not I_p
- Eddy currents depend on I_p direction, but not \dot{B}_t
- The segments measure sum or difference of Halo and eddy current across the gap depending on I_p and B_t directions
- \rightarrow asymmetry between the left and right segments

(a) I Halo I _{Halo} Toroidal direction R Insulation layer 🗸 IEddy IEddy $I_{Halo} + I_{Eddy}$ $I_{Halo} - I_{Eddy}$ B_t (b) I_{Halo} I _{Halo} Toroidal direction Insulation layer IEddy IEddv $I_{Halo} - I_{Eddy}$ $I_{Halo} + I_{Eddy}$ B_t I,

Justifications:

- Tile #1 measurements (non-symmetric Left and Right segments)
- Significant currents observed in floating mode

Contradictions:

- Tile #2 do not exhibit the asymmetry

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR Different wetted areas of the segments

Assumptions:

- Tile segments might be misaligned or shadowed by neighbouring

in-vessel structures

Measurements:

- Different Halo current is collected depending on field lines incident angles **Justifications:**
- Tile #1 and tile #2 exhibit different behaviour
- Shadowing of the tile #1 segments is observed, depends on I_p and B_t directions (fast visible camera) **Contradictions:**
- Tile #2 has significant current in floating mode

- Disconnection of one segment seem to affect its neighbour

#19509, Frame 728, t = 1095.6 ms

#19503, Frame 727, t = 1095.4 ms

Results: Divertor probes

- Two arrays of divertor Langmuir probes allowing measurements of floating potentials with 1µs resolution
- The probes can be switched to grounded mode \rightarrow current density profile detection
- Plasma limiter point is observed by the probes and is at the position where Left and Right segments of the special divertor tiles are located.
- Large positive floating potential is observed compared to T_e (~10 eV), broad current density profile (1-2 MA/ m²).

It is suggested that Halo current might be limited by ion saturation current. A separate dedicated experiment has been performed to confirm this

Conclusions and future plans

Conclusions:

- Current flows vary significantly from discharge to discharge with similar plasma parameters
- Tile #1 and tile #2 exhibit different trends: tile #1 has strong asymmetry between the toroidally separated segments in grounded mode, depends on I_p and B_t directions while tile #2 is almost symmetrical
- Significant currents are observed in floating mode for both tile #1 and tile #2, their nature is not always clear

New experiments with modified tiles' design:

- Exclude / confirm hypotheses:
 - Different wetted areas of the segments
 - ATEC model (combination of Halo and eddy currents is measured)

- 2 identical tiles
 - (instead of #1 small gap, #2 large gap)
- 8 segments (instead of 6)
- 3 gaps toroidally separating segments at HFS and LFS
 - (instead of only 1 gap at LFS)

New tile design

Avoid measurements near the contact point Larger incident angles