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Asymmetric wall force and thermal
quench in JET disruptions
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Asymmetric wall force in JET depends on CQ time and resistive wall time
Simulations with M3D-C1 and M3D
Compare well with JET data
Mechanism: VDE causes q =1
Mitigating in ITER

Thermal quench time can depend on resistive wall time
Simulations with M3D show resistive wall tearing mode (RWTM)
Might be mitigating in ITER
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JET sideways force
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M3DC1 and M3D runs were initialized with a reconstruction of JET shot 71985. The
current quench time 7¢g was controlled by applied electric field, and resistive wall
time 7,,,; was held fixed. Asymmetric or sideways wall force AF' was calculated as
a function of time, and peak value of A F' shown as a function of 7¢q/7Twai- JET ILW
2011-2016 database was used to obtain force AF, ~ mnBA(IZ), where A is the
amplitude of the asymmetric perturbation.
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AF, as a function of 7¢q/Twai,
Dots are JET Noll force. Fn103
are VDE shots, Fl,; are from all
shots. Simulation data is given for
M3D-C1 wall force labelled F,1
and Noll force Fync1, as well as
M3D runs F,34 and Fi3z4 [Strauss
et al. PoP 2017, PoP 2020]
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Zmag and g(a) Toroidal Current (MA)

(a) toroidal current and halo current vs. time
(b) Vertical displacement and q vs. time
(c) g profile whenqg=1
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(d) Current density depends onf
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Increase of wall force with CQ time
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VDE causes plasma to scrape off at the wall until edge ¢ = 1, destabilizing (1, 1)
mode. Wall force coincides with large n = 1 magnetic energy B,,;. AFy
(B,.1)Y?1,. Both B,,; and I, increase with 7.
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Thermal quench

M3D simulations initialized with JET shot 81540. The TQ time depends on Sy =
Twall/TA- Thermal transport depends on advection by RWTMs and parallel thermal
conduction, which in turn depends on the magnetic field perturbations b,, at the wall.

In the simulations S = 10°, x| = 10Ruva.

P, b,

T1ofTA VS. Syar
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(a) History of total pressure P and wall normal magnetic field perturbation b,, as a
function of time. As b,, increases in time, P falls more rapidly. Three cases are
shown, with S = 10°, and S,,.,; = 103,104, 10°. The subscript in the label refers to
Swanr SUCh that P,, b, correspond to Sy,qn = 10%. (b) 7rq/7a VS. Swau, The fits are to

S%° and constant. Linear simulations confirm growth rate

wall

v = coS
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Linear simulations
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Linear stability calculations indicate the presence of the resistive wall tearing mode.
The RWTM growth rate [Finn, 1995] is

_ —~1/3 o—4/9
1A = coSTH3S Y (1)
TTp VS. S TTAVS. S
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(a) Linear growth rate ~ as a function of S,,.;;, from simulations of JET shot 81540 .
The growth rate is consistent with S—4/9 (b) Growth rate as a function of S, consistent

wall
with S~1/3 scaling. Combining, v = coS, 7/°S~1/3. with co ~ 9. (¢ > 1 to eliminate
(1,1) mode.)
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Nonlinear TQ simulations
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(a) initial temperature T'. (b) temperature T" at t = 194574, showing (2,1) and
(3, 2) magnetic perturbations. At this time P ~ 70% of its initial value. (c) T at
t = 24287,4. At this time P ~ 30% of its initial value. (d) 7" at t = 288874, at the
end of the simulation.
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Theory of TQ (®)

or 10

—— = Ty bP— 2
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where b, is the normalized asymmetric radial magnetic field, assuming circular flux

surfaces for simplicity, and neglecting x ., .

Integrating, the total temperature is given by

o<T >
ot

where < T >= [Trdr,and T' = 8T /0r atr = a, a®T’/ < T >= 1. The normal
magnetic field at the wall grows during the TQ as b, = bg exp(~t). Then substituting
for b, in (3) and integrating in time, can obtain the approximate ad hoc formula

1
T 2y 4 xb2/a?

Convection dominates thermal conduction when 7. < 200eV near the wall, which
was observed in shot 81540. The ratio /x| o T3

(4)

TTQ

magnetic perturbations - From the simulations, b, ~ 1 x 10~3. Consistent with
JET data [DeVries et al. 2016].

TQ time trg ~ 1ms. -
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Summary @)

e asymmetric wall force A F, calculated in M3DC1 simulations.
— plasma scrape off to ¢ = 1 causing (1, 1) mode.
— AF, decreases as 7cq/Twan decreases.

— can mitigate wall force in ITER

e TQtime can vary as S;jl{g due to RWTMs.

— RWTM dominates parallel thermal conduction when T’ X 200eV.

— In ITER, if RWTM is suppressed, might mitigate wall heat load and RE
formation.
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