Analysis of the runaway electron distribution in an ASDEX Upgrade disruption using synchrotron radiation

Mathias Hoppe ${ }^{1}$
L. Hesslow ${ }^{1}$, O. Embreus ${ }^{1}$, L. Unnerfelt ${ }^{1}$, G. Papp ${ }^{2}$, I. Pusztai ${ }^{1}$, T. Fülöp ${ }^{1}$, O. Lexell ${ }^{1}$, T. Lunt ${ }^{2}$, E. Macusova ${ }^{3}$, P. J. McCarthy ${ }^{4}$, G. Pautasso ${ }^{2}$, G. I. Pokol ${ }^{5}$, P. Svensson ${ }^{1}$, the ASDEX Upgrade team ${ }^{2 *}$ and the EUROfusion MST1 team ${ }^{\dagger}$

${ }^{1}$ Chalmers University of Technology, Gothenburg, Sweden
${ }^{2}$ Max Planck Institute for Plasma Physics, Garching, Germany
${ }^{3}$ Institute of Plasma Physics of the CAS, Prague, Czech Republic
${ }^{4}$ Physics Department, University College Cork (UCC), Cork, Ireland
${ }^{5}$ NTI, Budapest University of Technology and Economics, Budapest, Hungary
*See author list of "H. Meyer et al. 2019 Nucl. Fusion 59 112014"
† See the author list of "B. Labit et al. 2019 Nucl. Fusion 59086020 "

EUROfusion

1. Experiment: ASDEX-U \#35628
2. Forward modelling (fluid-kinetic)

- Two-component picture of RE dynamics
- We observe remnant seed electrons

3. Backward modelling (radial profile inversion)

- Explanation for spot shape transition: density redistribution

ASDEX-U \#35628

- Deliberately triggered disruption
- Massive Gas Injection at $t=1 \mathrm{~s}$ (Ar, $\sim 10^{21}$ particles)
- Current $\sim 800 \mathrm{kA}$ to $\sim 200 \mathrm{kA}$
- ICRH applied
- Fast (1 kHz) visible-light camera
- Filtered at $\lambda=709 \mathrm{~nm}$ (FWHM 9 nm)
- Small current spike at $t \approx 1.030 \mathrm{~s}$
- Correlated with synchrotron pattern transition
- $(m, n)=(1,1)$ mode

$$
t-t_{\mathrm{inj}}=14.8 \mathrm{~ms} \quad t-t_{\mathrm{inj}}=24.8 \mathrm{~ms}
$$

Three questions to answer:

1. Can RE theory explain the round shape?
2. Why does the intensity increase?
3. What casuses the spot shape transition?

Forward modelling

We simulate the Thermal Quench (TQ) + Current Quench (CQ) + Runaway plateau using the coupled codes Go ${ }^{1,2,3}$ (fluid) and $\operatorname{CODE}^{4,5}$ (kinetic) in the cylindrical limit:

$$
\begin{align*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial E_{\|}}{\partial r}\right) & =\mu_{0} \frac{\partial j}{\partial t} \tag{Go}\\
\frac{\partial f}{\partial t}+e E_{\|} \frac{\partial f}{\partial p_{\|}} & =C\{f\}+S_{\mathrm{ava}} \tag{CODE}\\
j(r) & =e \int v_{\|} f(r, p, \xi) \mathrm{d}^{3} p
\end{align*}
$$

(coupling)
${ }^{1}$ Smith et al., (2006) PoP 12 122505;
${ }^{2}$ Fehér et al., (2011) PPCF 53 035014;
${ }^{3}$ Papp et al., (2013) NF 53123017
${ }^{4}$ Landreman et al., (2014) CPC 185847
${ }^{5}$ Stahl et al., (2016) NF 56112009

- Several unknowns from experiment:
- pre-TQ plasma current density
- impurity deposition/charge profile
- final temperature
- But, if avalanche RE generation dominates, mainly $\Delta \psi$ matters, which can be estimated from ΔI_{p}
- Several unknowns from experiment:
- pre-TQ plasma current density
- impurity deposition/charge profile
- final temperature
- But, if avalanche RE generation dominates, mainly $\Delta \psi$ matters, which can be estimated from ΔI_{p}

Hence, we

1. Run only Go through TQ to get $T_{e, \text { final }}, E_{\|}(r, t)$, ion charge distribution
2. Initialize CODE after TQ, just before $C Q$, with prescribed hot-tail seed
3. Evolve GO+CODE together through $\mathbf{C Q}$ and plateau

0-4 ms: Seed accelerated and multiplied during CQ
4-30 ms: Pitch angle relaxation
\Longrightarrow RE distribution consists of two components:

- Exponential avalanche component (carrying current)
- Remnant seed component at "max" energy

0-4 ms: Seed accelerated and multiplied during CQ
4-30 ms: Pitch angle relaxation
\Longrightarrow RE distribution consists of two components:

- Exponential avalanche component (carrying current)
- Remnant seed component at "max" energy

"Dominant particles"

${ }^{6}$ Hoppe et al., (2018) Nucl. Fusion 58026032

Remnant seed
"Dominant particles"

${ }^{6}$ Hoppe et al., (2018) Nucl. Fusion 58026032

Q1 Can RE theory explain the round spot shape?

- Yes. Shape determined by electron pitch angles.
- More accurate seed profile \Longrightarrow better agreement with spot size

Q2 Why does the intensity increase?

- Due to pitch-angle relaxation (increase)
- Synchrotron radiation power $\sim p_{\perp}^{2} \sim \theta_{\mathrm{p}}^{2}$

Backward modelling

- Forward modelling suggests that remnant seed dominates synchrotron
- The remnant seed has
- $f_{p}(p) \sim \exp \left[-\left(p-p^{\star}\right)^{2} / \Delta p^{2}\right] \sim \delta\left(p-p^{\star}\right)$
- $f_{\xi}(\xi) \sim \exp (C \xi)(\sim$ relaxed in pitch angle)

For the purpose of fitting to synchrotron radiation, fluid-kinetic modelling therefore suggests we take

$$
f(r, p, \xi)=f_{r}(r) \delta\left(p-p^{\star}\right) \exp (C \xi)
$$

(preferably, p^{\star} and C should vary with radius, but for simplicity we neglect this here)

Scanning over (p^{\star}, C) space yields

While C varies a lot, the more visually relevant "dominant pitch angle" θ^{\star} is fairly close to $\theta^{\star} \approx 0.3$ rad

(Shaded red/blue indicate maximum deviation with normalized image likeness ≤ 2)

Q3 What causes the spot shape transition?

- Spatial redistribution of electrons

Summary

- Synchrotron radiation observed in ASDEX-U \#35628
- Pattern intensity grows steadily for $\sim 25 \mathrm{~ms}$ post-disruption
- Pattern shape change at 30 ms - correlated with small current spike
- Fluid-kinetic model provides two-component picture of RE evolution
- Good, albeit not perfect, agreement
- Remnant hot-tail seed quickly accelerated to max energy (dominate SR)
- Runaways multiplied through avalanche mechanism (carry current)
- Gradual pitch angle relaxation during plateau (increased SR intensity)
- Backward modelling indicates cause of synchrotron pattern transition
- With help of model derived from fluid-kinetic simulations
- Rapid expulsion of some particles from core

For details:

Hoppe et al, "Spatiotemporal analysis of the runaway distribution function from synchrotron images in an ASDEX Upgrade disruption", submitted to JPP 2020 (arXiv:2005.14593).

