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Outline 2/ 14

AUG camera image #35628

1. Experiment: ASDEX-U #35628
2. Forward modelling (fluid-kinetic)

I Two-component picture of RE dynamics
I We observe remnant seed electrons

3. Backward modelling (radial profile
inversion)
I Explanation for spot shape transition:

density redistribution



ASDEX-U #35628
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� Deliberately triggered disruption
I Massive Gas Injection at t = 1 s (Ar, ∼ 1021 particles)
I Current ∼ 800 kA to ∼ 200 kA
I ICRH applied

� Fast (1 kHz) visible-light camera
I Filtered at λ = 709 nm (FWHM 9 nm)

� Small current spike at t ≈ 1.030 s
I Correlated with synchrotron pattern transition
I (m,n) = (1, 1) mode
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ASDEX-U #35628 – Fast camera synchrotron 4/ 14

Camera view t− tinj = 4.8ms t− tinj = 14.8ms t− tinj = 24.8ms

t− tinj = 28.8ms t− tinj = 29.8ms t− tinj = 39.8ms t− tinj = 72.8ms
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t− tinj = 14.8ms t− tinj = 24.8ms

t− tinj = 28.8ms t− tinj = 29.8ms

Three questions to answer:

1. Can RE theory explain the round shape?

2. Why does the intensity increase?

3. What casuses the spot shape transition?



Forward modelling



Fluid-kinetic modelling with GO+CODE 6/ 14

We simulate the Thermal Quench (TQ) + Current Quench (CQ) + Runaway
plateau using the coupled codes GO1,2,3 (fluid) and CODE4,5 (kinetic) in the
cylindrical limit:
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1Smith et al., (2006) PoP 12 122505; 4Landreman et al., (2014) CPC 185 847
2Fehér et al., (2011) PPCF 53 035014; 5Stahl et al., (2016) NF 56 112009
3Papp et al., (2013) NF 53 123017



Difficulties of disruption modelling 7/ 14

� Several unknowns from experiment:
I pre-TQ plasma current density
I impurity deposition/charge profile
I final temperature
I . . .

� But, if avalanche RE generation dominates, mainly ∆ψ matters, which can
be estimated from ∆Ip

Hence, we
1. Run only GO through TQ to get Te,final, E‖(r, t), ion charge distribution

2. Initialize CODE after TQ, just before CQ, with prescribed hot-tail seed
3. Evolve GO+CODE together through CQ and plateau
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Forward modelling: GO+CODE simulation results 8/ 14
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Forward modelling: SOFT6 simulation results 9/ 14
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SOFT image
t = 1.008 s

SOFT image
t = 1.018 s

SOFT image
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Forward modelling – evolution understood until 30 ms 10/ 14

t− tinj = 4.8ms

Acc. + avalanche

t− tinj = 14.8ms t− tinj = 28.8ms

Pitch angle relaxation

t− tinj = 29.8ms

Transition?

Q1 Can RE theory explain the round spot shape?
I Yes. Shape determined by electron pitch angles.
I More accurate seed profile =⇒ better agreement with spot size

Q2 Why does the intensity increase?
I Due to pitch-angle relaxation (increase)
I Synchrotron radiation power ∼ p2⊥ ∼ θ2p



Backward modelling



Backward modelling – inversion procedure 11/ 14

� Forward modelling suggests that remnant seed dominates synchrotron
� The remnant seed has

I fp(p) ∼ exp
[
−(p− p?)2/∆p2

]
∼ δ (p− p?)

I fξ(ξ) ∼ exp(Cξ) (∼ relaxed in pitch angle)

For the purpose of fitting to synchrotron radiation, fluid-kinetic modelling
therefore suggests we take

f(r, p, ξ) = fr(r)δ (p− p?) exp (Cξ) .

(preferably, p? and C should vary with radius, but for simplicity we neglect this here)



Backward modelling – results 12/ 14

Scanning over (p?, C) space yields
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While C varies a lot, the more visually relevant “dominant pitch angle” θ? is fairly close to θ? ≈ 0.3 rad



Backward modelling – results 13/ 14
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Q3 What causes the spot shape
transition?
I Spatial redistribution of electrons

t = 1.029 s t = 1.030 s

Experiment Experiment
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� Synchrotron radiation observed in ASDEX-U #35628
I Pattern intensity grows steadily for ∼ 25ms post-disruption
I Pattern shape change at 30ms – correlated with small current spike

� Fluid-kinetic model provides two-component picture of RE evolution
I Good, albeit not perfect, agreement
I Remnant hot-tail seed quickly accelerated to max energy (dominate SR)
I Runaways multiplied through avalanche mechanism (carry current)
I Gradual pitch angle relaxation during plateau (increased SR intensity)

� Backward modelling indicates cause of synchrotron pattern transition
I With help of model derived from fluid-kinetic simulations
I Rapid expulsion of some particles from core

For details:
Hoppe et al, “Spatiotemporal analysis of the runaway distribution function from synchrotron images
in an ASDEX Upgrade disruption”, submitted to JPP 2020 (arXiv:2005.14593).

https://arxiv.org/abs/2005.14593
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