

Analysis of the runaway electron distribution in an ASDEX Upgrade disruption using synchrotron radiation

Mathias Hoppe¹

L. Hesslow¹, O. Embreus¹, L. Unnerfelt¹, G. Papp², I. Pusztai¹, T. Fülöp¹, O. Lexell¹, T. Lunt², E. Macusova³, P. J. McCarthy⁴, G. Pautasso², G. I. Pokol⁵, P. Svensson¹, the ASDEX Upgrade team^{2*} and the EUROfusion MST1 team[†]

¹ Chalmers University of Technology, Gothenburg, Sweden
 ² Max Planck Institute for Plasma Physics, Garching, Germany
 ³ Institute of Plasma Physics of the CAS, Prague, Czech Republic
 ⁴ Physics Department, University College Cork (UCC), Cork, Ireland
 ⁵ NTI, Budapest University of Technology and Economics, Budapest, Hungary
 * See author list of "*H. Meyer et al. 2019 Nucl. Fusion* **59** *112014*"
 [†] See the author list of "B. Labit et al. 2019 Nucl. Fusion **59** *086020*"

- 1. Experiment: ASDEX-U #35628
- 2. Forward modelling (fluid-kinetic)
 - Two-component picture of RE dynamics
 - ► We observe **remnant seed** electrons
- 3. Backward modelling (radial profile inversion)
 - Explanation for spot shape transition: density redistribution

ASDEX-U #35628

ASDEX-U #35628

- Deliberately triggered disruption
 - ▶ Massive Gas Injection at t = 1 s (Ar, $\sim 10^{21}$ particles)
 - Current \sim 800 kÅ to \sim 200 kÅ
 - ICRH applied
- Fast (1 kHz) visible-light camera
 - Filtered at $\lambda = 709 \text{ nm}$ (FWHM 9 nm)
- Small current spike at $t \approx 1.030 \, \mathrm{s}$
 - Correlated with synchrotron pattern transition
 - $\blacktriangleright \quad (m,n)=(1,1) \text{ mode}$

ASDEX-U #35628 – Fast camera synchrotron

 $t - t_{inj} = 28.8 \text{ ms}$ $t - t_{inj} = 29.8 \text{ ms}$ $t - t_{inj} = 39.8 \text{ ms}$ $t - t_{inj} = 72.8 \text{ ms}$

 $t - t_{\rm inj} = 14.8 \,\mathrm{ms}$ $t - t_{\rm inj} = 24.8 \,\mathrm{ms}$

 $t-t_{
m inj}=28.8\,
m ms$ $t-t_{
m inj}=29.8\,
m ms$

Three questions to answer:

- 1. Can RE theory explain the round shape?
- 2. Why does the intensity increase?
- 3. What casuses the spot shape transition?

Forward modelling

We simulate the Thermal Quench (TQ) + Current Quench (CQ) + Runaway plateau using the coupled codes $GO^{1,2,3}$ (fluid) and $CODE^{4,5}$ (kinetic) in the cylindrical limit:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial E_{\parallel}}{\partial r}\right) = \mu_0 \frac{\partial j}{\partial t},\tag{G0}$$

$$\frac{\partial f}{\partial t} + eE_{\parallel} \frac{\partial f}{\partial p_{\parallel}} = C\left\{f\right\} + S_{\text{ava}},\tag{CODE}$$

$$j(r) = e \int v_{\parallel} f(r, p, \xi) \,\mathrm{d}^3 p, \qquad \qquad \text{(coupling)}$$

¹Smith *et al.*, (2006) PoP **12** 122505; ⁴Landreman *et al.*, (2014) CPC **185** 847 ²Fehér *et al.*, (2011) PPCF **53** 035014; ⁵Stahl *et al.*, (2016) NF **56** 112009 ³Papp *et al.*, (2013) NF **53** 123017 6/14

Several unknowns from experiment:

- ▶ pre-TQ plasma current density
- ▶ impurity deposition/charge profile
- ► final temperature
- ▶ ...
- But, if avalanche RE generation dominates, mainly $\Delta \psi$ matters, which can be estimated from $\Delta I_{\rm p}$

Several unknowns from experiment:

- ▶ pre-TQ plasma current density
- ► impurity deposition/charge profile
- ► final temperature
- ▶ ...
- But, if avalanche RE generation dominates, mainly $\Delta \psi$ matters, which can be estimated from $\Delta I_{\rm p}$

Hence, we

- 1. Run only G0 through TQ to get $T_{e,\text{final}}$, $E_{\parallel}(r,t)$, ion charge distribution
- 2. Initialize CODE after TQ, just before CQ, with prescribed hot-tail seed
- 3. Evolve GO+CODE together through CQ and plateau

Forward modelling: SOFT⁶ simulation results

"Dominant particles"

Forward modelling: SOFT⁶ simulation results

⁶Hoppe et al., (2018) Nucl. Fusion **58** 026032

Q1 Can RE theory explain the round spot shape?

- ▶ Yes. Shape determined by electron pitch angles.
- $\blacktriangleright \quad \text{More accurate seed profile} \implies \text{better agreement with spot size}$

Q2 Why does the intensity increase?

- ► Due to pitch-angle relaxation (increase)
- $\blacktriangleright~$ Synchrotron radiation power $\sim p_{\perp}^2 \sim \theta_{\rm p}^2$

Backward modelling

Forward modelling suggests that remnant seed dominates synchrotron
 The remnant seed has

•
$$f_p(p) \sim \exp\left[-(p-p^\star)^2/\Delta p^2\right] \sim \delta\left(p-p^\star\right)$$

• $f_{\xi}(\xi) \sim \exp(C\xi)$ (~ relaxed in pitch angle)

For the purpose of **fitting to synchrotron radiation**, fluid-kinetic modelling therefore suggests we take

$$f(r, p, \xi) = f_r(r)\delta(p - p^*) \exp(C\xi).$$

(preferably, p^* and *C* should vary with radius, but for simplicity we neglect this here)

Scanning over (p^{\star}, C) space yields

While C varies a lot, the more visually relevant "dominant pitch angle" θ^* is fairly close to $\theta^* \approx 0.3$ rad

(Shaded red/blue indicate maximum deviation with normalized image likeness ≤ 2)

- Q3 What causes the spot shape transition?
 - Spatial redistribution of electrons

Summary

Summary

- Synchrotron radiation observed in ASDEX-U #35628
 - \blacktriangleright Pattern intensity grows steadily for $\sim 25\,ms$ post-disruption
 - Pattern shape change at 30 ms correlated with small current spike
- Fluid-kinetic model provides two-component picture of RE evolution
 - ► Good, albeit not perfect, agreement
 - Remnant hot-tail seed quickly accelerated to max energy (dominate SR)
 - Runaways multiplied through avalanche mechanism (carry current)
 - ► Gradual pitch angle relaxation during plateau (increased SR intensity)
- Backward modelling indicates cause of synchrotron pattern transition
 - With help of model derived from fluid-kinetic simulations
 - Rapid expulsion of some particles from core

For details:

Hoppe et al, "Spatiotemporal analysis of the runaway distribution function from synchrotron images in an ASDEX Upgrade disruption", submitted to JPP 2020 (arXiv:2005.14593).