AEA TM, July 2020

Runaway Electron Studies and Plasma Restart from a RE Beam on TCV

<u>U. Sheikh</u>¹, J. Decker¹, G. Papp², B. P. Duval¹, S. Coda¹ & the TCV team³

1) EPFL, Swiss Plasma Center, CH-1015 Lausanne, Switzerland
 2) Max Planck Institute for Plasma Physics, D-85748 Garching, Germany
 3) See author list of S. Coda et al 2019 Nucl. Fusion 59 112023
 Email: umar.sheikh@epfl.ch

EPFL Presentation Overview

Overview of current TCV internal RE research program

- TCV capabilities
- Baseline scenario for RE generation
- Scan of injection gas species
 - Natural current decay rates

Explore heating of background plasma ("plasma restart")

- Promote Ohmic current carrying channel
- Secondary D₂ injection
 - Heat background plasma
- Restart from clean RE beam (primary D₂ injection)
- Preliminary modelling

- Full current conversion RE beams
 - Range of shaping
 - Neg. triangularity, elongations up to 1.5
 - Limited or diverted configurations

- Full current conversion RE beams
 - Range of shaping
 - Neg. triangularity, elongations up to 1.5
 - Limited or diverted configurations
 - Low density target plasmas
 - ne<1e19m⁻³
 - High pre-disruption electric field
 - ~20-40x classic critical electric field
 - Generate RE seed population
 - Disruptions induced by MGI

U. Sheikh

- Full current conversion RE beams
 - Range of shaping
 - Neg. triangularity, elongations up to 1.5
 - Limited or diverted configurations
 - Low density target plasmas
 ne<1e19m⁻³
 - High pre-disruption electric field
 - ~20-40x classic critical electric field
 - Generate RE seed population
 - Disruptions induced by MGI
- Consistently generate 200kA RE beams with over 1s of steady beam duration
- Tokamak magnetic configuration maintained by I_p

- Mature control system
 - RE beam in control down to 10kA
 - Position control of RE beam
 - z-movement of beam (Hoppe 2020)
 - Fixed I_p or dI_{OH}/dt
 - RT triggers to switch
- Versatile MGI system
 - 5 fast opening/closing valves
 - Multiple injections
 - Variations in species and quantity
 - Same location
 - D₂, He, Ne, Ar, Kr or Xe possible

Diagnostics for this presentation

- Thomson scattering system (red squares)
 - 3 lasers that can operate in "burst"
 - Temperatures down to 6eV
- FIR interferometry (14 vertical chords) (green lines)
- Ex-vessel hard X-ray measurements
 - Min. photon energy: 150keV
- Filtered soft X-ray diodes for core T_e (xT_e)
 - 0.1ms temporal resolution

EPFL

8

n Gas

Scan of Injection Gas Species

Natural Decay Rates

EPFL Variation of Gas Species

- I_{OH} set constant at disruption
 - No external energy introduced to system
 - Measure natural current decay rate (τ_{CD})
- Dataset includes He, Ne, Ar, Kr, Xe
 - Fewer injected particles for higher Z

mjecuc	Gas	Particles		l_{CD} (60-20%) (S)	l_{CD} (190-100KA) (S)
He (2)		5.70E+19	2.35E+00	0.927	0.452
Ne (10)		5.63E+18	2.33E-01	0.459	0.364
Ar (18)		4.81E+18	1.99E-01	0.281	0.282
Kr (36)		2.10E+18	8.67E-02	0.413	0.406
Xe (54)		1.83E+18	7.57E-02	0.398	0.342

200/1/01

Variation of Injection Amount EPFL

- τ_{CD} and n_e proportional to amount injected
 - HXR photons doubled for doubled Xe
- Strong correlation of τ_{CD} with injection amount and Z

0.413

0.215

0.398

0.190

Modelling on-going

Particles

mbar L

2.10E+18 8.67E-02

4.20E+18 1.73E-01

1.83E+18 7.57E-02

3.66E+18 1.51E-01

Injection Gas

Kr (36)

Xe (54)

Kr (36) x2

Xe (54) x2

EPFL

Secondary D₂ Injection

U. Sheikh

EPFL Neon Flushed With Second D₂ Injection

- Stable RE beam already created (Ne)
 - $I_p @150 kA$ for stability
 - Bulk of current carried by REs

EPFL Neon Flushed With Second D₂ Injection

- Stable RE beam already created (Ne)
 - $I_p @150 kA$ for stability
 - Bulk of current carried by REs
- D₂ injection (~20x Neon injection pcls)
 - Background plasma disappears
 - Remaining $T_e < 1eV$

EPFL Neon Flushed With Second D₂ Injection

- Stable RE beam already created (Ne)
 - $I_p @150 kA$ for stability
 - Bulk of current carried by REs
- D₂ injection (~20x Neon injection pcls)
 - Background plasma disappears
 - Remaining $T_e < 1eV$
- Background plasma reheats after 50ms
 - Pre-D₂ injection regime achieved
 - High generation of REs expected
 - Increase in dl_{OH}/dt
 - Sharp "drops" in I_p
 - High RE losses inferred from HXR
- Bulk of current still carried by REs

EPFL Increased D₂ Injection Maintains Low Density

- Sufficient D₂ injection prevents ionisation
- Background plasma disappears
 - T_e below 1eV maintained
- dl_{OH}/dt remains low
 - Low E_{Φ} maintained
 - RE formation reduced
- HXR reduced and maintained
- Bulk of current still carried by REs
 - Low $\rm T_{e}$ and $\rm n_{e}$ in background plasma

Injection Gas	Particles	mbar L
Neon	5.63E+18	0.23
D2 (Red)	9.90E+19	4.11
D2 (Green)	2.97E+20	12.33
D2 (Blue)	4.95E+20	20.55

EPFL Background Plasma Heated With NBH

- 800kW injected into cold, low n_e plasmas
 - Poor absorption expected
- Goal: Heat/ionise a background plasma
 - Promote as current carrying channel
- n_e and T_e increase
 - Some power coupled
- Loss of REs, drop in I_p
 - High dl_{OH}/dt heats background plasma
- Radiation losses quickly cool plasma after beam
 - Similar n_e, dI_{OH}/dt and HXR to pre-D₂ injection levels
 - Bulk of current still carried by REs
- Similar results with Ar and He flushing

EPFL

17

Primary D₂ Injection

EPFL Primary D₂ Injection Creates RE Beam and Restart

- D₂ injection => disruption @0.47s
 - Low temperature background plasma
 - HXR emission signalling RE ejection

EPFL Primary D₂ Injection Creates RE Beam and Restart

- D₂ injection => disruption @0.47s
 - Low temperature background plasma
 - HXR emission signalling RE ejection
- Large HXR event at 0.52s
 - Expulsion of RE
 - Background plasma heated
- Low HXR and $n_e \sim 0.5e19$ maintained
 - V_{loop} remains below 1

EPFL Primary D₂ Injection Creates RE Beam and Restart

- D₂ injection => disruption @0.47s
 - Low temperature background plasma
 - HXR emission signalling RE ejection
- Large HXR event at 0.52s
 - Expulsion of RE
 - Background plasma heated
- Low HXR and $n_e \sim 0.5e19$ maintained
 - V_{loop} remains below 1
- Higher n_e and dI_{OH}/dt for high fuelling
 - Injection from standard fuelling valve
- OH spike @1.15s (TCV specificity)

- No T_e measurements during RE phase
 - Standard spectroscopy too slow
 - Temperature too low for TS and xTe
 - TS suggests T_e < 5eV

IAEA TM, July 2020

- No T_e measurements during RE phase
 - Standard spectroscopy too slow
 - Temperature too low for TS and xTe
 TS suggests T_e < 5eV
- HXR burst @0.52s => l_p drops 20%
- Plasma temperature measurable
 - xTe (assumes Maxwellian distribution)
 - Good match with TS
 - Background plasma heating in 5-10ms
 - Flux surfaces already established

- No T_e measurements during RE phase
 - Standard spectroscopy too slow
 - Temperature too low for TS and xTe
 TS suggests T_o < 5eV
- HXR burst @0.52s => l_p drops 20%
- Plasma temperature measurable
 - xTe (assumes Maxwellian distribution)
 - Good match with TS
 - Background plasma heating in 5-10ms
 - Flux surfaces already established
- Plasma current recovers and HXR emissions remain low
- Potential for current to be carried by background plasma - modelling

EPFL

25

Preliminary Modelling

EPFL Modelling with LUKE

- LUKE : relativistic guiding-center Fokker-Planck code (Decker 2008)
 - Current diffusion equation not solved
 - Only valid in quasi-steady phases
- Pre-disruption: suprathermal electrons (including REs) drive 80% of I_p
 - Towards slideaway regime?
- Post-disruption: Ohmic contribution is 4x higher with high fueling
 - Slightly higher T_e, much higher V_{loop}
 - Similar to pre-disruption Ohmic contribution with low fueling
- Higher n_e => lower RE generation vs transport => higher V_{loop} => larger Ohmic contribution
- Ongoing modelling to characterize RE population

EPFL Summary

- Confined RE beams reliably created on TCV via MGI
- Natural decay rates with He, Ne, Ar, Kr, Xe covered
- Flushing and background plasma heating demonstrated
- D₂ primary injection led to RE beam followed by background plasma reestablished at 1keV
 - LUKE modelling predicts high post-disruption Ohmic contribution to Ip
- Only a small subset of full TCV RE database
 - Data available for model validation and collaboration

U. Sheikh

 École polytechnique fédérale de Lausanne