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Stochastic field increases 
runaway electron losses

Field fully stochastic after thermal quench.
How the seed population is affected?

P. Helander et al, Suppression of runaway electron avalanches 
by radial diffusion, 2000
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Stochastic field increases 
runaway electron losses

Field fully stochastic after thermal quench.
How the seed population is affected?
Reduced kinetic model + coefficients
capturing transport due to 3D field.
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Stochastic field increases 
runaway electron losses

Field fully stochastic after thermal quench.
How the seed population is affected?
Reduced kinetic model + coefficients
capturing transport due to 3D field.

But!
Transport lower in experiments than
the Rechester-Rosenbluth diffusion.

P. J. Catto et al, Estimating the runaway diffusion coefficient in the TEXT
tokamak from shift and externally applied resonant magnetic-field experiments, 1991

I. Entrop et al, Diffusion of runaway electrons in TEXTOR-94, 1997
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Stochastic field increases 
runaway electron losses

Field fully stochastic after thermal quench.
How the seed population is affected?
Reduced kinetic model + coefficients
capturing transport due to 3D field.
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Stochastic field increases 
runaway electron losses

Field fully stochastic after thermal quench.
How the seed population is affected?
Reduced kinetic model + coefficients
capturing transport due to 3D field.

But!
Transport lower in experiments than
the Rechester-Rosenbluth diffusion.
Islands? Or finite orbit-width effects?
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Does finite orbit-width (FOW) effects
lead to reduced RE transport?

We investigate this with orbit-following simulations.
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Theoretical estimates for FOW effects valid in general.
Non-uniform magnetic field structure could dominate.

Does finite orbit-width (FOW) effects
lead to reduced RE transport?

We investigate this with orbit-following simulations.

Results:
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Theoretical estimates for FOW effects valid in general.
Non-uniform magnetic field structure could dominate.
Islands probably have a larger effect on transport.
Orbit-following tools needed to find the transport 
coefficients.

Does finite orbit-width (FOW) effects
lead to reduced RE transport?

We investigate this with orbit-following simulations.

Results:
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FOW effects in theory.

Validating theory with orbit-following simulations.

FOW effects in realistic magnetic fields.

Introduction

Summary
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Rechester-Rosenbluth diffusion

A. B. Rechester and M. N. Rosenbluth, Electron Heat Transport
in a Tokamak with Destroyed Magnetic Surfaces, 1978

Energy
D

if
fu

si
on

Assumes zero orbit-width.
Over-estimates transport of the more energetic electrons?
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FOW effects reduce transport

Energy
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 effects

Assumes zero orbit-width.
Over-estimates transport of the more energetic electrons?
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Orbit-averaging along poloidal orbit
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Zero orbit-width

Perturbation is averaged along particle's poloidal trajectory

Orbit-averaging

J.R. Myra and P. J. Catto et al, Quasilinear diffusion in stochatic magnetic fields: 
Reconciliation of drift-orbit modification calculations, 1993

When:

for
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Perpendicular decorrelation
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Zero orbit-width

Poloidal drift leads to perpendicular decorrelation

Perpendicular 
decorrelation

T. Hauff and F. Jenko, Runaway electron transport via tokamak microturbulence, 2009

When:

for

INTRO VERIFICATION RESULTSTHEORY SUMMARY 13/42 



Orbit-averaging along gyro-orbit
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Perturbation is averaged along particle's gyro-orbit

Orbit-averaging
(gyro scale)

When:

for

T. Hauff and F. Jenko, Runaway electron transport via tokamak microturbulence, 2009
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Transitional regime
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FOW effects in theory.

Validating theory with orbit-following simulations.

FOW effects in realistic magnetic fields.

Introduction

Summary

Two mechanisms: orbit-averaging and perpendicular decorrelation
Important when orbit width > perpendicular correlation length
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This is my playground

Assume mode width           .
25 modes with  n < 10 and m < 20.
Each mode peaks at the resonant surface.
Same amplitude and width.

Radius
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These are my toys

Electrons initialized at the same radial
position and simulated until losses saturate.
Loss-time used to find advection-diffusion coefficients.
Assumes radially uniform transport.

10 7 10 6 10 5 10 4
0

1

Time [s]

Fraction of 
particles lost Simulation

Fit (Inverse Gaussian)
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J. Varje et al, High-performance orbit-following code ASCOT5 for Monte Carlo 
simulations in fusion plasmas, 2019
K. Särkimäki et al, An advection-diffusion model for cross-field runaway electron transport in 
perturbed magnetic fields, 2016
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Three cases with different mode width

mode width and     increases
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Diffusion as a function of energy 
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Separate gyro and orbit-width effects
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Thresholds for significant FOW effects
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Plot criteria for the different mechanisms

Orbit-averaging valid
Orbit-averaging invalid
Perpendicular decorrelation
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Correlation length < gyroradius

Orbit-averaging valid
Orbit-averaging invalid
Perpendicular decorrelation
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Correlation length < orbit width

Orbit-averaging valid
Orbit-averaging invalid
Perpendicular decorrelation
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Correlation length > orbit width

Orbit-averaging valid
Orbit-averaging invalid
Perpendicular decorrelation
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FOW effects in theory.

Validating theory with orbit-following simulations.

FOW effects in realistic magnetic fields.

Introduction

Summary

Theory and simulations agree in general.
Some discrapency in regards to orbit-averaging and gyro-orbit effects.
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ITER: flat-top with ELM control coils

10 keV
100 keV
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100 MeV

Orbit-averaging valid

Orbit-averaging valid up to 100 MeV.
                at 600 MeV;              at 2 GeV.

K. Särkimäki et al, An advection-diffusion model for cross-field runaway electron transport in 
perturbed magnetic fields, 2016
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ITER: flat-top with ELM control coils
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Orbit-averaging valid
Field line

Gyro orbit
Guiding center

Orbit-averaging valid up to 100 MeV.
                at 600 MeV;              at 2 GeV.
More sizeable and earlier reduction than
what theory predicts.
Caused by the localised perturbation?
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Orbit-averaging valid up to 50 MeV.

JET: before the thermal quench

10 keV
100 keV

1 MeV
10 MeV

100 MeV

Orbit-averaging valid

E. Nardon et al, Progress in understanding disruptions triggered by massive gas injection
via  3D  non-linear  MHD  modelling  with  JOREK, 2016
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Orbit-averaging valid up to 50 MeV.
Particles confined after 20 MeV.
More energetic particles spend more
time inside the well-confined region.
Note the low diffusion.
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Orbit-averaging valid up to 50 MeV.

JET: during the thermal quench
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Orbit-averaging valid up to 50 MeV.
           (!)
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Perturbation orbit-average
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Perturbation orbit-average
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What if we remove the barrier?
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Perturbation orbit-average
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Are these results generalizable?

Normalized minor radius

FOW effects not relevant if                   .
          mode width.
Mode width ~ minor radius.
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FOW effects in theory.

Validating theory with orbit-following simulations.

FOW effects in realistic magnetic fields.

Introduction

Summary

Other effects dominate.
Again discrapency in orbit-averaging; is it due to localised perturbation?
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Transport reduction at zero orbit width

Assuming small Kubo number                                          .
Rechester-Rosenbluth diffusion should correspond to
the numerical zero orbit width result (field line).
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Transport reduction at zero orbit width

ITER coil
JET edge stoc.
JET full stoc.
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Assuming small Kubo number                                          .
Rechester-Rosenbluth diffusion should correspond to
the numerical zero orbit width result (field line).
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Transport reduction at zero orbit width
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Transport reduction at zero orbit width

The tests

Assuming small Kubo number                                          .
Rechester-Rosenbluth diffusion should correspond to
the numerical zero orbit width result (field line).

Islands?
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Theoretical estimates for FOW effects valid in general.
Non-uniform magnetic field structure could dominate.
Islands probably have a larger effect on transport.
Orbit-following tools needed to find the transport 
coefficients.
Future work involves finding what effect perturbations
have on the seed population and the avalanche growth rate.

Summary

(What was left out)
Advection coefficient, pitch dependence, evaluation of 
autocorrelation lengths.
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K. Särkimäki et al, Assessing energy dependence of the transport of relativistic electrons in perturbed 
fields with orbit-following simulations, Preprint: https://arxiv.org/abs/2006.03726


