

# Non-linear MHD simulation of benign RE beam termination in JET

<u>V. Bandaru<sup>1</sup></u>, M. Hoelzl<sup>1</sup>, C. Reux<sup>2</sup>, O. Ficker<sup>3</sup>, G.T.A. Huijsmans<sup>2,4</sup> ,C. Sommariva<sup>5</sup>, S. Silburn<sup>6</sup>, M. Lehnen<sup>7</sup> , N. Eidietis<sup>8</sup>, and JET contributors

<sup>1</sup> Max Planck Institute for Plasma Physics, Garching; <sup>2</sup> CEA, Cadarache; <sup>3</sup> IPP, Prague, <sup>4</sup> Eindhoven University of Technology; <sup>5</sup> EPFL, Swiss Plasma Centre, Lausanne; <sup>6</sup> CCFE, Culham Science Centre, UK; <sup>7</sup>ITER Organization; <sup>8</sup> General atomics, CA







This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

# JET experiment with D<sub>2</sub> second injection<sup>#</sup>



- Disruption triggered by Argon SPI leading to an RE beam
- During the RE plateau phase, D2 is injected (2nd SPI)
- After about 240ms, fast loss of REs occur
- The discharge then terminates in a few tens of milliseconds, w/o any localized FW damage

Aim: Understand the MHD behaviour leading to the RE losses via non-linear simulations using JOREK<sup>\*</sup>

JET



# Reux et al., Manuscript in preparation

\* Huijsmans et al., NF 47, 659 (2007) Czarny et al., JCP 227, 7423 (2008) Hoelzl et. al. JPCS 401, 012010 (2012) www.jorek.eu

#### Constraints on the equilibrium



- Synchrotron (infrared) image reconstructions confirm a hollow current profile
- Experimental data indicate that
  - before the crash, m=4 surface lies in the region of about 0.15m < r < 0.35m
  - n=1 is the dominant toroidal mode
- Test simulations with JOREK indicate a transition from n=2 to n=1 dominance beyond a threshold central safety factor

Used to fix the lower bound of the central safety factor



#### Equilibrium





#### JOREK domain and model



- Domain covers the whole volume until the PFCs
- No impurities and neutrals
- RE-fluid<sup>\*</sup>, no sources
- RE transport represented via anisotropic diffusion with, Dr,par / Dr,perp = 1x10<sup>11</sup>
- Spitzer resistivity at 10eV (spatially uniform)
- Constant-in-time internal energy of the background cold plasma

$$\begin{array}{ll} \mbox{Poloidal flux:} & \frac{1}{R^2} \frac{\partial \psi}{\partial t} = -\frac{\eta}{R} \left( J_{\phi} - J_{r,\phi} \right) - \frac{1}{R} \left[ u, \psi \right] - \frac{F_0}{R^2} \frac{\partial u}{\partial \phi} + \\ \\ \mbox{Plasma momentum:} & \frac{\partial \left( \rho \boldsymbol{v} \right)}{\partial t} = -\nabla \cdot \left( \rho \boldsymbol{v} \boldsymbol{v} \right) + \boldsymbol{J} \times \boldsymbol{B} - \nabla_{\perp} p_{\rm th} \\ \\ \mbox{Generalized Ohm's law:} & \boldsymbol{E} = \eta \left( \boldsymbol{J} - \boldsymbol{J}_r \right) + \dots \\ \\ \mbox{RE density:} & \frac{\partial n_r}{\partial t} = -\theta \nabla \cdot \left( v_{r,\parallel} \boldsymbol{\hat{b}} n_r \right) + (1 - \theta) \left[ \nabla_{\parallel} \cdot \left( D_{r,\parallel} \nabla_{\parallel} n_r \right) + \nabla_{\perp} \cdot \left( D_{r,\perp} \nabla_{\perp} n_r \right) \right] \end{array}$$

# Energy of the poloidal magnetic field (modes n=1 to n=8)





JET

#### Stochastization and fast RE losses





# Current flattening due to fast magnetic reconnection



#### RE loss and current spike









#### Simulations show very good agreement with experiments w.r.t.

- Fast timescale of MHD growth and crash
- (m,n) = (4,1) dominance and its observation just before the crash
- Shrinking of the core leading to near-complete stochastization and loss of REs

### Outlook

- Model extension to incorporate partial screening effects of impurities
- Predictions catering to ITER disruption scenarios