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Abstract 

The paper focusses on a subset of recent results obtained in flux-driven gyrokinetics where core, edge and scrape-off 
layer plasmas may self-consistently interplay through the introduction of a penalised material boundary (limiter) within the 
computed domain. These results are precisely described in a forthcoming paper; the present manuscript proposes a 
companion pedagogical approach to an information theoretic measure, the “Transfer Entropy” method, useful to assess 
causality in complex (time series) datasets. This manuscript hopefully provides some useful basics for the forthcoming 
discussion of the causal chain of events at inception of a spontaneous and stable transport barrier at the plasma edge. 

1. INTRODUCTION 

For over three decades, the observation of rapid core confinement improvement upon favourable modifications 
of edge operating conditions has been a nagging source of puzzlement for experimentalists investigating 
conditions for a lasting source of fusion energy in tokamaks. The transport properties of drift-wave turbulence 
and the interaction of the confined plasma with its material boundaries have long been recognised as essential to 
the resolution of this conundrum. Key aspects of the turbulent dynamics in the plasma edge are poorly 
quantified, owing to the disparity of temporal and spatial scales and the inadequacy of performing scale 
separations. A forthcoming paper [1] will be detailing three key results that arise when a material boundary is 
introduced in flux-driven gyrokinetics, effectively interconnecting core, edge and Scrape-Off Layer (SOL) 
regions. We show that (a) turbulence is not only locally driven by local gradients but nonlocally controlled by 
fluxes of turbulence activity, primarily though not exclusively borne at the edge. This `nonlocal’ influence is 
mediated through vortex-flow localised interactions near the material boundaries and has two major 
consequences: (b) the nonlinear destabilisation of the linearly stable edge, providing a possible resolution for the 
so-called `shortfall’ conundrum and (c) the spontaneous emergence of a stable and localised transport barrier at 
the closed/open field line transition, possible prelude to the formation of a pedestal. In the present manuscript, 
we focus on the latter point and discuss a general technique, the so-called ``Transfer Entropy” imported from 
information theory that provides a useful tool to assess the causal chain of events that leads to the onset of this 
stable edge transport barrier. This point is of course of basic interest: it allows to precisely test theoretical 
frameworks from the perspective of primitive equations and as such provides important guidelines for reduced 
modelling. 

2. CHAIN OF CAUSALITY AND THE ``TRANSFER ENTROPY” (T.E.) METHOD 

Unravelling causal chains of events in complex datasets is challenging yet especially rewarding when the dataset 
stems from either experimental measurements or has been computed from the primitive equations. Low-
frequency microturbulence in fusion plasmas is appropriately described by gyrokinetics. GYSELA[2] models 
ions and trapped electrons gyro-kinetically in the core and edge regions as well as the closed/open field line 
transition and the Scrape-Off Layer (SOL) through introduction of a simplified penalised limiter[3] mimicking 
the role of a heat and momentum sink. Core, edge and SOL are treated on an equal footing. As we find strong 
interplay between these distinct regions and the spontaneous development of a stable edge transport barrier, the 
flux of information across the edge is complex and typically not merely locally influenced. In other words, its 
evolution is not only subject to variations of the local free energy, ie. the mean local gradients. Investigating 
techniques that may allow to disentangle the causal chain of events is very desirable and would provide 
quantitative insight regarding the dominant feedback loops involved.  
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Causality detection in information theory is actively debated [4]. We will focus here on a simple nonlinear 
extension of the Granger causality, introduced by Schreiber [5] as the ``Transfer Entropy” (TE) method and 
investigated in magnetised plasmas by Van Milligen et al. [6] and Nicolau [7]. Let us state at this point that our 
goal here is not to provide a discussion on the concept of causality itself but rather put to use one of its possible 
manifestations –defining causality let alone inferring it is indeed still lively discussed [8]. The idea behind TE is 
simple yet powerful: let’s consider a time series (xi) with 0 £ i £ n, of realisations of observable X. If one can 
better predict its next realisation xn+1 using additional data from another time series (yj) with 0 £ j £ n of 
observable Y, then we shall say that ``Y causes X”, which constitutes our definition of causality here. This idea 
is quantified measuring deviation of transition probabilities from independence, i.e. from a stationary Markov 
process. In its simplest expression, as used here, if processes X and Y are independent, then the following 
generalised Markov property holds for all 0 £ k £ n: p(xn+1|xn-k,yn-k) = p(xn+1|xn-k). If now processes X and Y are 
not independent, the ratio of these two transition probabilities provides a measure of how much information they 
may share, i.e. how much knowing values in Y in addition to past values in X may help to better evaluate next-
step xn+1. This idea leads to the following definition of the Transfer Entropy (TE) from process Y to process X: 

 
where k is thus a time lag and represents the k-past of times series X and Y. The TE can equivalently be recast 
as a conditional mutual information and represents the additional amount of information that must be added to 
adequately represent the studied process p(xn+1|xn-k,yn-k) with respect to its reference Markov process p(xn+1|xn-k). 
In the absence of information flow from Y to X, the logarithm vanishes as the state of Y has no influence on the 
transition probabilities of X, hence the name. It also follows that TE is directional, i.e. TEYàX ¹ TEXàY, which 
allows to infer causality between processes X and Y. It is also to be noted that TE is quite generic and displays 
interesting properties: it is independent of the relative magnitudes of signals X and Y; it may apply to either 
linear and nonlinear regimes; it is easy to evaluate (directly in real space rather than in Fourier space) and 
typically less demanding in terms of statistics that bispectral techniques.  
 
Practically, TE is evaluated expressing the conditional probabilities as joint probabilities, eg. p(xn+1|xn-k, yn-k) = 
p(xn+1,xn-k,yn-k)/p(xn-k,yn-k) and computing the 4 multidimensional pdfs: 

  
as a function of time delay k and normalised such that 0 £ TE £ 1. Here we have introduced the additional 
exponent a ³ 1, which effectively represents a nonlinear threshold: low probabilities will be further reduced and 
higher ones amplified. In the following, we take a=1. In a complex setting, information may flow both ways, 
from Y to X and inversely. It is thus especially useful to define the net transfer entropy DX,Y(TE)[k] = TEYàX[k] 
- TEXàY[k], which provides the net flow of information between processes X and Y, at timelag k. This is the 
quantity that we now discuss in further detail.  

3. MANUFACTURED SOLUTIONS AND PROOF OF CONCEPT 

TE is found to be weakly dependent on a few choices that the user must perform: in the following, we discretise 
the pdf in Eq.(2) using 2d bins, with d the dimensionality of the pdf. The magnification exponent a is set to unity 
and X and Y are discretised at the same rate and chosen to enter the TE calculation with zero temporal mean. In 
order to provide a pedagogical introduction to the interpretation of transfer entropy graphs, let us detail the 
following manufactured solutions. In Fig.1 we show the example for a random time series X. Y is constructed 
such that it exactly corresponds to X, with a forward in time delay of 9 units. As only past information may be 
shared between X and Y and as time lag k tests for similarities in shape of processes X and Y, TE(YàX) should 
be vanishing for all time lags for a random time series and display a marked peak around time lag k=9 for the 
TE(XàY). The net TE simply states that for all the 50 time lags considered here, the only meaningful flow of 
information can go from XàY, with a time lag of 9. 
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Figure 1. (Top left and right) Time traces of the two processes X and Y over which TE is computed. 
For visualisation purposes only, Y is offset by its maximum value. TE (YàX) is represented (lower 
left) in purple and TE (XàY) in black (lower right) as a function of time lag k. The net Transfer 
Entropy DX,Y(TE) is displayed as well (dashed green). 

Similarly, in Fig.2, focussing on the left panel, the blue peak at time=31 from process Y may transfer 
information to the two peaks of process X at times=40 and 140, the former with a time lag=9, the latter with a 
time lag=109. Inversely, considering the reverse TE(XàY), the peak at time=40 may only transfer information 
towards peaks at time=69, 131, and 169 and not to the previous in time=31 peak. This illustrates causality in the 
flow of time and clarifies the reason of TE(XàY) peaking at time lags = 29, 91, … (bottom right panel).  

 

Figure 2. Time traces of processes X and Y and associated TE calculations; colour coding and legends are as in Fig.1. 
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Figure 3. TE applied to the Lotka-Volterra equations; colour coding and legends are as in Fig.1. 

 

Another typical situation, common in nonlinear dynamics is illustrated in Fig.3, simulating predator-prey 
behaviour from the Lotka-Volterra equations:  

 

with parameters a = 1, b = 0.1, c = 0.075 and d = 1.5. The typical cyclic behaviour between predator and prey is 
readily seen through the Lissajoux display (bottom right panel) of process X (the prey) as a function of the 
predator Y. Where correlation analysis would merely pick up the periodicity of the predator and prey 
oscillations, this example illustrates the usefulness of the net Transfer Entropy DX,Y(TE) (dashed green, lower 
left panel) as it provides guidance regarding the flow of information, as the nonlinear system evolves. Individual 
TE curves provide knowledge on typical waiting times for the system to reach a given state. For instance, 
TE(XàY) [black, lower panel] tells us that starting from a large number of preys (X1), the system will need 
about k~6 time steps to reach a state with a large number of predators (Y1). Inversely, from TE(YàX) starting 
from a large predator state (Y1), the system will require k~25 time lags to be able to sustain again a large 
number of preys (X3). Of course, in a complex system information keeps flowing between preys and predators 
during the whole oscillation period. Net TE DX,Y(TE) captures inflexion points relevant for the dynamics. Thus, 
peak A corresponds to the situation where an increase in prey numbers or a large abundance of preys triggers a 
large predator growth with time lag~6. In stage B, predators in large numbers now eat more preys than their 
birthrate manages to compensate and decimates their numbers. During stage C, preys in fewer numbers trigger a 
decline in predator numbers with a time lag ~18. The low predator population in stage D now triggers with a 
time lag ~25 the increase in prey growth and the system loops again.  

4. T.E. APPLIED TO THE FAR-EDGE REGION WHERE A TRANSPORT BARRIER DEVELOPS 

We now systematically compute the TE algorithm to actual time series from large-scale GYSELA flux-driven 
computations with limiter boundary conditions in the last 3% inside the last closed flux surface (LCFS) where 
the spontaneous onset of a persistent transport barrier is observed. A vorticity equation [9] can be inferred from 
the primitive gyrokinetic equations whilst including the ExB drift and finite Larmor radius effects and can be 
recast at leading order as follows:  
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with r and q respectively the minor radius and poloidal angle and <•> denoting an average over toroidal angle j. 
We have applied the TE algorithm to many possible permutations of quantities in Eq.(5) and especially to the 
following set:  

 

The net transfer entropy of the first three quantities in Eq.(9), radially and poloidally averaged (respectively over 
the last 3% of the plasma volume and p/3 region symmetric about the limiter) is displayed in Fig.4. It features a 
central information flow from the diamagnetic advection of vorticity in the early onset of the edge transport 
barrier. The spontaneous symmetry breaking and poloidal distribution of pressure fluctuations induced by the 
plasma—limiter interplay is highlighted. These results are discussed in a forthcoming paper. 

 

Figure 4. Causality, as inferred from the application of the TE algorithm to an actual time series 
from flux-driven gyrokinetic computations near the LCFS, at inception of an edge transport barrier. 

 

5. CONCLUSIONS AND OUTLOOK 

The present manuscript has focused on laying out useful basics to assess causality in time series analysis, using 
with the so-called ``Transfer Entropy” method a nonlinear extension of the Granger causality. The practical use 
of this method, applied to nonlinear dynamics from advanced gyrokinetic computations of tokamak turbulence 
will be reported shortly elsewhere [1]. 
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