INERTIAL FUSION ENERGY SUMMARY S. Le Pape Laboratoire pour l'Utilisation des Lasers Intenses IAEA Fusion Energy Conference 2020

Indirect drive

increase energy coupling to the capsule using new hohlraums geometry and « old tricks »

- rugby hohlraums
- low gas fill hohlraums + CBET
- Iraums

Direct drive

Optimized shock sequence and target thickness using statistical approach

Gopalaswamy, IFE/P1-6

Fast Ignition

Improve capsule stability and electron beam divergence

- External B field
- Solid capsule
- Improved laser contrast

Beam driven FRC plasma

Advanced plasma and machine optimizations, through:

- Optometrist Algorithm utilization (human + AI)
- sophisticated active plasma controls on magnets, edge biasing, beams, and gas fueling.

Fast Ignition

Guiding cone for laser-absorption R. Kodama+, Nature 2004.

Capacitor-coil for REB manipulation S. Fujioka+, Sci. Rep. 2013.

Plasma mirror for cooling REB Y. Arikawa+, Appl. Opt. 2016.

Solid ball

for stable fuel compression S. Fujioka+, Phys. Rev. E, 2015.

Realization of efficient plasma heating to Peta-Pascal level

Fujioka, IFE/P1-9

Kodama, IFE/1-1

Fujioka, IFE/P1-9

Ozaki, IFE/P1-14 Kitagawa, IFE/P1-15

Fujioka, IFE/P1-9

SEPECH later bears SEPECH later bears Volume Volume

Design of sub-critical research reactor

Iwamoto IFE/P4-17

Advanced target facility Aleksandrova, IFE 1540

Kodama, IFE/1-1 Kawanaka, IFE/1-3

At 100 Hz, much heat induces strong internal stress in the laser materials.

- Wavefront distortion
- Birefringence

Indirect Drive Ignition

The goal is to increase hohlraum to capsule coupling -> increase capsule size by 15 to 20 % with similar hohlraum size

Converging plasma blow-off from the wall and capsule block inner beam propagation to the hohlraum waist¹

Detuning the outer and inner wavelengths ($\Delta\lambda$) transfers power from outers to inners, increasing waist drive Pockets displace the bubble radially outwards, giving more time for inner beams to deliver power to the waist

Iraums target are also a promising route, the most recent shot produced 170 kJ of neutron yield

Larger capsule (3 mm) in Rugby hohlraum led to a doubling in hohlraum to capsule coupling (30%)

	Measured	Simulated
Peak Tr (eV)	248 ±3	248
At 8.4ns		
Shell velocity (µm/ns)	151 ±8	144
<r> (µm)</r>	890 ±20	884
<pr> (mg/cc)</pr>	3.3 ±0.7	4.3
Shell FWHM (µm)	89 ±14	100
Mass (mg)	3.0 ±0.2	3.67
Shell kinetic energy (kJ)	34 ±4	38
At 10.6ns		
<r> (µm)</r>	550 ±20	538

Shell velocity measurement and post shot simulation Indicated 30% of coupled energy

Ping, IFE/1-2

There are several path forwards for closing the gap to the ignition boundary

Improving implosion quality (pressure)

- Reducing low-mode asymmetry
- Reducing ablator mix in hotspot
- Increasing compression ratio
- Reducing 3D perturbations may enable driving implosions at higher velocity, increasing 1D margin

Increasing implosion scale (energy)

- Increase capsule size with fixed NIF laser energy through more efficient hohlraum designs
- Increase capsule and hohlraum size with additional NIF laser energy (exploring up to 2.6 MJ)

Patel, OV/3-1

Beam driven FRC plasma

FRC sustainment up to 30+ ms achieved on Norman device

T_e >0.5 keV, T_{tot} >3 keV

- Norman can produce a wide range of T_e & n_e: T_e >0.5 keV (measured by Thomson scattering)
- Plasma temperature T_{tot} >3 keV estimated by interpretive plasma reconstruction using experimental measurements

Conclusion: significant progresses toward ignition are being made across ignition schemes

Capsule increased by 15-20% but hohlraum only increased by 3% vs HDC -> higher efficiency

Converging plasma blow-off from the wall and capsule block inner beam propagation to the hohlraum waist