28th IAEA Fusion Energy Conference Summary: Magnetic Fusion Experiments - I

Core Confinement60MHD & Stability26Energetic Particles17Divertor & SOL42

M.C. Zarnstorff PPPL, USA 15 May 2021

ITER Construction – Fantastic Progress

- Major components being delivered
- First sector starting assembly
- Cryostat & coils being installed in pit
- Buildings & infrastructure being completed
- Incorporation of new developments, e.g. shattered pellets DM
- Research prep. progressing
- 1st plasma: late 2025
- Community support is essential to success.

B.Bigot OV/1-1

VV Sector 6 in the sector

Installation of the cryostat side-wall and PF-coil #6 in the tokamak pit sub-assembly tool

New & Upgraded Experiments Operating

First plasma: 2019 ST performance, high T

M.Gryaznevich OV/4-5 X.Duan EX/4-3

First plasma: 2020 High performance w/ adv. divertors

First plasma: 2020 Super-X Divertor ST performance

J.Harrison EX/P6-1538

JT60-SA (JP, EU)

B_T=2.25T, I_P=5.5MA Commissioning Long pulse adv. scenarios

Y.Kamada OV/2-4

New Experiment Projects/Upgrades

DTT (IT)

R=2.19m, A=3.1 B_T=6T, I_P=5.5MA

Exhaust physics, core-edge integration divertor test facility

P.Martin EX/P-1053

SPARC (CFS, Inc.)

R=1.85m, A=3.2 B_T=12.2T, I_P=8.7MA

Q > 2 short pulse Long-leg divertor P.Rodriguez -Fernandez OV/P-856

RFX-mod2 (IT)

R=2m, A=4.1 I_P=2MA

Closer shell, double poloidal gaps, improved PFCs

L. Marrelli EX/P-1077

Core Confinement

- Predict-First Modeling
- Impact of fast ions
- Isotope scaling
- Stellarator transport & confinement
- High performance in JET
- ST confinement

Accurate Predict-First Models Developed

Ding EX/1-3; J.McClenaghan TH/P8-1016

- Separatrix parameters from empirical model of gas puff & 2-pt model
- Pedestal from PB-stability & critical temperature gradient model
- Core plasma inside pedestal using TGLF
- More accurate than scaling laws for AUG!
- U. Stroth OV2-2; G.Tardini TH/P2-926

- Pedestal from EPED Core transport from TGYRO, TGLF, NEO
- NBI and RF sources
- Time evolution from ONETWO
- Successfully designed high β_{P} scenarios

0.8

1.0

See also J.Citrin TH/3-2 QuaLiKiz

Impact of Fast Ions on Turbulent Transport Can Differ Between D & H

N. Bonanomi et al, NF 2019

J.Mailloux OV/1-2 A.Di Siena TH/4-1

- FI impact studied in JET D and H L-mode by varying ICH ³He resonance
- Fast ion (FI) stabilization of turbulence can produce isotope effects can be large in regimes with high Fast Ion content, beta and rotation [J. Garcia, NF 2018].
- Isotope mass differences affects FI pressure gradient via:
 - Heating deposition profile
 - FI slowing down time
- GENE (GK) modelling shows that differences in FI in H vs D lead to strong deviations from GB scaling of thermal core transport

Dimensionless Identity Isotope Effect Experiments

L-mode dimensionless energy confinement independent of isotope mass: $\Omega_i \tau_{E,th} \sim A^{0.05\pm0.1}$ where Ω_i is the ion cyclotron frequency.

Dimensionless Isotope Effect Experiments

Stellarator Isotope Scaling

- Database of H and D plasmas at fixed magnetic configuration (R=3.6m)
- NBI heated, dominantly heating electrons P_e/P_i=3.9±2.0

 $T_e(0)/T_i(0)=1.79\pm0.37$

• Fit to operational parameters

 $\tau_{E,th}^{R360\,NBI} \propto M^{-0.07 \pm 0.01} B^{0.85 \pm 0.01} \overline{n}_e^{0.73 \pm 0.01} P_{abs}^{-0.81 \pm 0.01}$

• Fit to dimensionless parameters

$$\tau_{E,th}^{R360NBI} \Omega_i \propto M^{0.94} \rho^{*-3.02} \nu^{*0.15} \beta^{-0.23}$$

gyro-Bohm with a separate Mass-dependence

H. Yamada EX/P4-1084 ¹⁰

LHD

Isotope Mixing and Non-Mixing

- Isotopic densities measured by bulk ion charge-exchange recombination.
- Mixing plasmas have ne > 2-3x10¹⁹ m³, hollow density profile
- Non-mixing plasmas have low density ne < 2-3x10¹⁹ m³, peaked density profile

- Gyrokinetic analysis suggests strong correlation with ITG-TEM
 - Mixing: core ITG unstable, TEM stable

(p = 0.5)

• Non-mixing: core ITG stable, TEM unstable

HD

W7X: Neoclassical Optimization Successful

Calculated neoclassical energy transport for W7X profiles in other stellarator shapes

- Pellet peaked density profile to reduce ITG
- Other configurations scaled to same volume and B=2.5T as W7X
- Neoclassical losses calculated using W7X density and temperature profiles
- Other configurations: losses exceed W7X heating power => temperature inaccessible!

W7X: Highest Performance with Pellets

Growth rate vs density and temperature scale lengths

- ECH heating only, 4.9 MW, B=2.5T
- From GENE calculations, need a/L_n ~ a/L_{Ti} to suppress ITG & TEM
- Confinement enhancement of 1.3 x ISS04 scaling
- Accessible using multi-pellet fueling
- Highest n(0) Ti(0) τ_{E} for a stellarator

M.Beurskens EX/6-3 S.A. Bozhenkov NF 2020

13

- Ti clamps with only electron heating, independent of magnetic configuration
- ITG stronger for T_e > T_i enforces marginal stability
 Very difficult to increase T_i from an initial condition of T_e >> T_i
- Ion-electron thermalization ~ $(T_e-T_i)/T_e^{3/2}$ weakens as T_e increases
- Enhanced confinement usually requires ITG suppression or weakening (ETB, ITB)

M.Beurskens EX/6-3

- Core P_{rad} stable
- Pedestal collisionality approaching ITER

J.Garcia EX/1-2

- $T_i > T_e$ including pedestal
- Increased rotation
- Core P_{rad} stable
- Record peak and average DD reaction rate

Spherical Torus Confinement Advances

within uncertainty

12 14 16 18

 10^{0}

High-k diagnostic Synhk: (∇n), q, s

> 10 Κ_Ιρ_s

8

- Using novel synthetic diagnostic, nonlinear gyrokinetic simulations (GYRO) reproduce electron transport & high-k microwave scattering spectra for <u>moderate-β</u> NSTX H-mode
- Parameter scans (∇n, ∇ T, q, s) used to quantify sensitivity of predicted fluxes and synthetic high-k spectra

W.Guttenfelder OV/4-5.2

MHD, Stability, and Fast Ion Transport

- Shaping: Reversed Triangularity
- Quasi-Symmetric Magnetic perturbations
- Magnetic flux pumping
- Fast Ion Instabilities & Transport

- H(98y,2) ~ 1, β_N =3, without power threshold
- L-mode edge maintained. H-mode threshold drastically higher.
- SOL heat-flux width ~ 1.5 x H-mode width
- ' $\tau_{\rm P} \sim \tau_{\rm E}$ from laser blow-off

A.Marinoni EX/6-6.1 L.Porte EX/6-6.2

β_N=3

• Improvement maintained for $q_{95} < 3$, upto

Density fluctuations reduced inside LCFS

Reduced SOL turbulence on low-field side,

due to shorter connection length

Quasi-Symmetric Magnetic Perturbations (QSMP)

- QSMP in a tokamak: 3D magnetic perturbation that induces the minimum neoclassical 3D torque (NTV) and transport. Compared to RMP (resonant MP) or NRMP (non-resonant MP)
- Optimization for QS perturbation uses self-consistent torque response matrix

DDD

- QSMPs do not show confinement degradation in high- β flattop, or impact on L-H transition power in KSTAR and DIII-D, despite large amplitude perturbations
- Thus: Error fields can be modified towards quasi-symmetry, minimizing resonant and no-resonant effects, and minimizing confinement impact.

Experimental Evidence of Magnetic Pumping at AUG

- Experimentally test new theoretical model of flux pumping at high β
 with (1/1) mode [I. Krebs, PoP 2017]
- Possible way to reduce needed current drive in reactors
- Cases where q-profile evolution does follow neoclassical current diffusion
- Or, central co-ECCD cannot drive q(0) down, below q=1 (IMSE measurements, without sawteeth)
- Stronger effect at high β (like theory)
- At high non-inductive current, effect may not be strong enough to keep q(0)=1
- Qualitative agreement with theory, but model gives more peaked current than measurements.

A.Burckhart EX/4-1

ASDEX Upgrade

Scenario prepared to assess α -driven instabilities in JET-DT

- α-driven instabilities are potentially an issue for burning plasmas, including ITER. Unambiguously identified only in TFTR-DT plasmas so far.
- A dedicated scenario was developed and tested to observe α -Toroidal Alfven Eigenmodes (TAE) in JET-DT, including:
 - Good fusion performance from Internal Transport Barrier
 - Elevated central q-profile, to lower threshold
 - Real-time control trigger to switch to afterglow at peak performance
 - NBI-only before afterglow, to not generate other fast ions
 - ELM pacing by pellets
 - Core-localised TAEs when ICRH heating used (as test)
- Extrapolations to DT using integrated modeling (TRANSP & CRONOS) predict $\beta_{\alpha}(0) \sim 0.15\%$ and ~9 MW of fusion power. This is larger than extrapolations for previous JET pulses, and than the TFTR-DT α -instability experiments.
- JET / TFTR comparisons included in plans for coming JET DT campaign

Control of Fast-Ion Alfvenic Modes in Advanced Steady-state Scenarios

- Energetic ion driven Alfvenic Eigenmodes (AE) are common in advanced scenarios with elevated q-min, causing transport of the energetic ions.
- Broadened energetic ion profile gives better control of AE stability in elevated q-min scenarios. Key factor is moving ρ_{q-min} towards region of reduced $\nabla \beta_{fast}$
- In DIII-D NBI experiments, this was done by switching from central to off-axis neutral beams
 - Accessed 15% higher β_{N}
 - Ratio of expected to measured neutron emission increased by ~25% in flattop
- TGLF-EP + ALPHA critical gradient model reproduces energetic ion transport trends. Matches measured neutron rate within 12%>

 Provides basis for understanding how to avoid AE-induced energetic ion transport in ITER and future burning plasmas.

NATIONAL FUSION FACILITY 22

Improved fast-ion transport modeling

C. Collins EX/8-2

Divertor & Scrape-off-layer

- Super-X divertors
- Controlled Detachment
- Stellarator divertors
- Divertor experiments and modeling

Heat Flux Reduced in Super-X Divertor

New Methods to Control Detachment

- Metal-wall devices need (low Z) seed-impurity injection for detachment radiator. Previously Nitrogen was best, but:
 - Complicates tritium processing chemistry
- New gasses are successfully integrating a detached edge with core confinement without confinement degradation
 - Neon JET High Performance Scenarios
- J.Mailloux OV1-2 J.Giroud EX/P3-977 L.Wang EX/7-1 L.Wang EX/7-1 A.Kallenbach EX/2-5

- Neon DIII-D High- β_P Scenario
- Neon,Argon EAST High- β_{P} Scenario
- Argon AUG EDA H-mode
- New feedback control methods of detachment for reliable operation
 - AUG Location of emission
 - DIII-D, EAST J_{sat}, T_{e,div}, P_{rad}

M.Bernert EX/7-3 L.Wang EX/7-1

W7X Island Divertor Is Highly Effective

- Core plasma surrounded by helical island chain (typ. 5/5) that interfaces to divertor baffles.
- Wetted area up to 1.5 m² to spread exhaust heat, increases with P_{SOL}
- Islands shield against impurity sources, e.g. hot spots on divertor tile edges
- Stable, complete detachment in many scenarios achieved, for up to 26 sec. Detachment density ~10²⁰ m⁻³
- Below detachment, observe high recycling regime, enabled by counter-streaming flows in islands.

M. Jakubowski EX/7-4

pр

EPFL TCV with Baffles – a Divertor Testbed

- Divertor baffles increase neutral pressure ~5x, increase divertor dissipation. Facilitates detachment in L- and H-mode.
- Detachment density ~25% lower with baffles
- Flexible coil-set enables divertor leg steering
- SOLPS drift simulations predicts key features and trends. E.g, potential structure, currents.
- Reduction of detachment threshold for Super-X (large radius target) lower than originally predicted with baffles. May be due to details of geometry.

DIII-D SAS is a Divertor Testbed

- SAS: Small Angle Slot divertor
- Interaction between drift flows and divertor geometry has important effects on dissipation
- SOLPS-ITER with drifts reproduces trends found in experiments
 - Lower T_e and detachment density with drift away from divertor.
 - Drifts are comparable to geometry in effects on recycling flux and neutral density
- Experiment and modeling both found that geometry+drift can alter variation of dissipation

H.Wang EX/7-6

Including T_e bifurcation and J_{sat} reduction

Thank You

A Comprehensive Study of Energetic Particle Transport due to Energetic Particle Driven MHD Instabilities in LHD Deuterium Plasmas

- Beam ion and DD fusion born triton transport due to energetic-particle-driven MHD instabilities (EIC) is simultaneously studied in the Large Helical Device (LHD).
- Drop of total neutron emission rate (S_n) by EIC shows enhanced beam ion transport due to EIC.
 - Experiments in full D and H/D beam conditions shows that EIC induces up to 8% of passing transit beam ion losses and up to 60% of helically-trapped beam ion losses.
- Drop of secondary DT neutron emission rate (S_{n_DT}) increases substantially with the EIC amplitude to the third power and reaches ~30%.
 - 1 MeV tritons are largely transported because the tritons are barely confined in LHD.

- Nonlinear GENE simulations: higher fast ions pressure in D-plasmas stabilizes turbulence (slowing-down time)
- Similar experiments in JET

P.A. Schneider EX/P4-1084