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CONTROL OF THE X-POINT RADIATOR IN FULLY-
DETACHED ASDEX UPGRADE H-MODE PLASMAS

Motivation

● Detachment is essential for ITER & DEMO
• Partial to pronounced detachment

• High dissipated power fraction fdiss ≥ 95%

● Detachment is induced by impurity seeding
• Balance between reattachment & radiative collapse

➔ Control is crucial
• Still requires a stable scenario

• Can ELMs also be avoided?

Conclusion

• X-point radiation is a stable regime, shown in AUG & JET

• The X-point radiator moves inside the confined region

• The movement can be actively controlled

• First time control of full detachment!

• A high location of the radiator leads to ELM suppression

For a future reactor, this would provide:

• Detachment in metal machines achieved with seeding

• With the pronounced detachment of the outer divertor, an

intense, localized radiator evolves close to the X-point.

• Most likely radiation condensation (MARFE-like)

• Total radiated power fraction close to 100%

XPR radiates up to 1/3 of the heating power

• X-point radiation (XPR) is:

→ Stable scenario

→ Existing with N or Ar seeding (at ASDEX Upgrade)

→ Existing in a wide range of heating power: Pheat [MW] = 2.5 – 20

Pheat/PLH = 1 – 5
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• Radiator reproduced by SOLPS [Reimold, NF 2015]

• Temperature reduction within confined region

• D line radiation → efficient recombination

• Te = 1-2 eV, ne ≥ 3∙1020 m-3

→ Parallel temperature gradients

inside confined region!
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Why is it stable here? Hypotheses:
• Highest flux expansion ↔ longest connection length to midplane

→Low, sustainable parallel temperature gradients

→Power flux driven parallel to magn. field

→Radiator acts as heat sink

• Influence of near divertor (neutral & impurity penetration for local cooling)

Overview of an discharge – movement of the X-point radiator (XPR)

• Constant N seeding programmed → slow evolution of N concentration

• XPR moves inside confined region:

Location of the XPR can be 

actively influenced

• Location observed with AXUV camera →

• Moves inwards with

• Lower heating power

• Higher N seeding

• No clear scaling of position with cN / ΓN / Pheat yet

• XPR forms close to X-point

• Moves further inside

• Up to 15 cm inside confined

region (ρpol ≈ 0.99) observed

Real-time control of the XPR position

Sensor: AXUV diodes →

- SIO2 real time data acquisition

- ELM filter: 20 ms median

- Offset subtraction of measured profile

- Peak detection by calculation of 1st moment

(dashed lines)

Actuator: N or Ar seeding
- PI controller on vertical distance 

of detected peak to X-Point

- Further possibility as actuator:
Heating power (not implemented yet)

Application of the controller
• Controller tested by variation in:

Heating power XPR location Ar seeding as actuator

• Detection within 5 mm

• Power steps well compensated

• Controller unstable at:

- Location around 4 cm

- Low heating power

• Tested for N seeding with 2-18 MW

- ELMy H-mode stable for Pheat ≈ PLH

• Applicable also to Ar seeding:

- Adjusted gains

→ noisy signal and noisy feedback

An ELM suppressed regime for high locations of XPR

• At high locations of the XPR (>7 cm above the X-Point), ELMs are suppressed

• Sudden change of characteristics:

• Cold (Te≈1-2 eV) and dense (ne≤3∙1020 m-3) plasma at X-point inside confined region!

• ELMs disappear

• Density reduced by 15%

• WMHD reduced by ~10%

• Increased divertor

neutral compression

• Reduced W content

• H98 ≈ 0.95

• fGW ≈ 0.8

• cN ≈ 2-4%

• Pedestal gradients 

reduced

• Characteristics between 

L- & H-mode:

• Er-well depth

• Filament 

characteristics

• Reproducible scenario

• Existing at heating 
powers of 2-17.5 MW

✓An operational window between 

detachment and radiative collapse

✓A simple observer for the control

✓ELM suppression at high density 

and moderate confinement

Applicability for a 

future reactor to be 

further investigated


