Max-Planck-Institut für Plasmaphysik

CONTROL OF THE X-POINT RADIATOR IN FULLY-DETACHED ASDEX UPGRADE H-MODE PLASMAS

<u>M. Bernert*</u>, F. Janky, B. Sieglin, A. Kallenbach, B. Lipschultz¹, O.Pan, F. Reimold², S. Wiesen³, M. Wischmeier, O. Kudlacek, M. Cavedon, P. David, M.G. Dunne, B. Kurzan, R.M. McDermott, W. Treutterer, E. Wolfrum, D. Brida, O. Février⁴, S. Henderson⁵, M. Komm⁶, the EUROfusion MST1 team⁺ and the ASDEX Upgrade Team⁺⁺

Max Planck Institute for Plasma Physics, Garching, Germany ¹University of York, York Plasma Institute, York, United Kingdom ²Max Planck Institute for Plasma Physics, Greifswald, Germany ³Forschungszentrum Jülich GmbH, IEK, Jülich, Germany ⁴EPFL, Swiss Plasma Center (SPC), Lausanne, Switzerland ⁵CCFE, Culham Science Centre, Abingdon, United Kingdom

⁶Institute of Plasma Physics of the CAS, Prague, Czech Republic +See: B. Labit et al 2019 Nucl. Fusion 59 086020 ++See: H. Meyer et al 2019 Nucl. Fusion 59 112014

Motivation

- Detachment is essential for ITER & DEMO
 - Partial to pronounced detachment
 - High dissipated power fraction $f_{diss} \ge 95\%$
- Detachment is induced by impurity seeding
 - Balance between reattachment & radiative collapse
- ➔ Control is crucial
 - Still requires a stable scenario

Real-time control of the XPR position

- Sensor: AXUV diodes
- \rightarrow
- SIO2 real time data acquisition
- ELM filter: 20 ms median
- Offset subtraction of measured profile
- Peak detection by calculation of 1st moment (dashed lines)

Actuator: N or Ar seeding

 PI controller on vertical distance of detected peak to X-Point

• Can ELMs also be avoided?

The X-point radiation regime

- Detachment in metal machines achieved with seeding
- With the pronounced detachment of the outer divertor, an intense, localized radiator evolves close to the X-point.
- Most likely radiation condensation (MARFE-like)
- Total radiated power fraction close to 100%
 XPR radiates up to 1/3 of the heating power
- X-point radiation (XPR) is:
 - \rightarrow Stable scenario
 - \rightarrow Existing with N or Ar seeding (at ASDEX Upgrade)
 - \rightarrow Existing in a wide range of heating power:
- Radiator reproduced by SOLPS [Reimold, NF 2015]
- Temperature reduction within confined region
 - D line radiation \rightarrow efficient recombination
 - $T_e = 1-2 \text{ eV}, n_e \ge 3.10^{20} \text{ m}^{-3}$
 - → Parallel temperature gradients inside confined region!

Why is it stable here? Hypotheses:

 Further possibility as actuator: Heating power (not implemented yet)

Application of the controller

Controller tested by variation in:

- Detection within 5 mm
- Power steps well compensated
- Controller unstable at:
- Location around 4 cm
 Low heating power
- Tested for N seeding with 2-18 MW
- ELMy H-mode stable for P_{heat} ≈ P_{LH}
- Applicable also to Ar seeding:
- Adjusted gains
- \rightarrow noisy signal and noisy feedback

- Highest flux expansion ↔ longest connection length to midplane
 - \rightarrow Low, sustainable parallel temperature gradients
 - \rightarrow Power flux driven parallel to magn. field
 - \rightarrow Radiator acts as heat sink
- Influence of near divertor (neutral & impurity penetration for local cooling)

Overview of an discharge – movement of the X-point radiator (XPR)

• Constant N seeding programmed \rightarrow slow evolution of N concentration

 \rightarrow

- XPR moves inside confined region:
- XPR forms close to X-point

An ELM suppressed regime for high locations of XPR

- At high locations of the XPR (>7 cm above the X-Point), ELMs are suppressed
- Sudden change of characteristics:
 - ELMs disappear
 - Density reduced by 15%
 - W_{MHD} reduced by ~10%
- Increased divertor neutral compression
 - on f
- Reduced W content
- H₉₈ ≈ 0.95
 f_{GW} ≈ 0.8
 C_N ≈ 2-4%
- Cold ($T_e \approx 1-2 \text{ eV}$) and dense ($n_e \leq 3 \cdot 10^{20} \text{ m}^{-3}$) plasma at X-point inside confined region!
- Pedestal gradients reduced
 Characteristics between
- L- & H-mode: • E_r-well depth
- Filament characteristics
- Reproducible scenario
- Existing at heating powers of 2-17.5 MW

Conclusion

• X-point radiation is a stable regime, shown in AUG & JET

- Moves further inside
- Up to 15 cm inside confined region ($\rho_{pol} \approx 0.99$) observed

Location of the XPR can be actively influenced

- Location observed with AXUV camera
- Moves inwards with
 - Lower heating power
 - Higher N seeding
- No clear scaling of position with $c_N / \Gamma_N / P_{heat}$ yet

- The X-point radiator moves inside the confined region
- The movement can be actively controlled
- First time control of full detachment!
- A high location of the radiator leads to ELM suppression

For a future reactor, this would provide:
✓ An operational window between detachment and radiative collapse
✓ A simple observer for the control
✓ ELM suppression at high density and moderate confinement

* Corresponding author: matthias.bernert@ipp.mpg.de

IAEA FEC 2020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

