Diverted Negative Triangularity plasmas on DIII-D: The benefit of high confinement without the liability of an edge pedestal

Alessandro Marinoni

with

A. Marinoni¹, M.E. Austin², A.W. Hyatt³, S. Saarelma³, F. Scotti⁴, Z. Yan⁵, C. Chrystal³, S. Coda⁶, S. Ding³, F. Glass³, J.M. Hanson⁷, A. McLean⁴, D. Pace³, C. Paz-Soldan⁷, C.C. Petty³, M. Porkolab¹, L. Schmitz⁸, F. Sciortino¹, S.P. Smith³, K.E. Thome³, F. Turco⁷

¹Massachusetts Institute of Technology, Cambridge, MA, USA
²University of Texas at Austin, Austin, TX, USA
³General Atomics, San Diego, CA, USA
⁴Lawrence Livermore National Laboratory, Livermore, CA, USA
⁵University of Wisconsin at Madison, Madison, WI, USA
⁶Ecole Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
⁷Columbia University, New York, NY, USA
⁸University of California at Los Angeles, Los Angeles, CA, USA

Presented to the 28th International Atomic Energy Agency - Fusion Energy Conference

May 27th, 2021

High confinement L-mode plasmas at Negative Triangularity extended to diverted configuration

- A novel LSN equilibrium at negative triangularity was created
- L->H power threshold drastically increases
- L-mode edge plasmas sustain H-mode grade confinement and pressure levels
- SOL power fall-off length significantly widens

Outline

- Introduction
- Previous inner wall limited experiments
 - TCV
 - ➡ DIII-D
- New diverted experiments on DIII-D
- Conclusions

Why do we study Negative Triangularity?

- Nuclear fusion needs high confinement [D. Lawson, Technical report 1955]
 - → H₉₈ is largest leverage for capital cost of power plant [M. Wade, 2019]
 - H-mode offers a solution [F. Wagner, PRL 1982]
- Standard H-mode is enabled by pedestal (=> drawbacks)
 - Edge Localized Modes
 - ★ I-mode, QH-mode, RMP, Pellet pacing
 - Impurity retention (helium ash)
 - Narrow heat flux width in Scrape-Off layer
 - ★ Unfavorable scaling with B_{pol} [R.J. Goldston, NF 2012]
 - Detachment cliff worsens as λ_a narrows [H. Du, NF 2020]
 - * ExB poloidal flows driven by steep gradients near separatrix
 - Need to stay above LH power threshold and dissipate all in SOL

Why do we study Negative Triangularity?

* ExB poloidal flows driven by pressure pedestal

A Marinoni IAEA-FEC 2020

Outline

Introduction

Previous inner wall limited experiments

- TCV
- ✤ DIII-D
- New diverted experiments on DIII-D
- Conclusions

EC heated Negative Triangularity L-mode plasmas obtained H-mode-like energy confinement on TCV

- Inner wall limited L-mode
- Pure electron heating (ECH) $T_e >> T_i$
- \checkmark -8 lowers χ_e only at low collisionality
- TEM dominated

EC heated Negative Triangularity L-mode plasmas obtained H-mode-like energy confinement on TCV

Heuristic explanation

Trapped electron is always in **bad** curvature region

Inner wall limited L-n

- Pure electron heating
- - δ lowers χ_e only at lo

SWISS PLA

CENTER

TEM dominated

FÉDÉRALE DE LAUSANNE

8/22

The same trapped electron spends time in **good** curvature region

Y. Camenen, NF 2007]

Non-linear GK modeling fairly reproduce collisionality and δ dependence of heat diffusivity

Radial dependence not reproduced Global effects? [G. Merlo EPFL Ph.D Thesis 2016]

DIII-D demonstrated high confinement L-mode plasmas at reactor grade pressure level

10/22

- ELM free
- Near zero power degradation
- ◆ T_i~T_e
- No major MHD event
- Low impurity confinement time
- Expected ideal limit at β_N ~3-3.2

Low torque is not expected to significantly deteriorate confinement (preliminary modeling)

Outline

Introduction

- Previous inner wall limited experiments
 - → TCV
 - ➡ DIII-D

New diverted experiments on DIII-D

Conclusions

Diverted experiments were executed to extrapolate this scenario to reactors

Existing Inner wall limited experiments on DIII-D **do not** inform on:

- CORE: Does confinement degrade at low Z_{eff} ?
 - Transition between ITG/TEM dominated regimes
- CORE/EDGE: Power scans at constant density
 - Field lines far away from cryo-pumps
- EDGE: What is the H-mode power threshold ?
 - LH power threshold above max auxiliary power allowed
- **SOL:** How wide is λ_q ?
- SOL: Do plasmas detach ?
 - Is it easy to control detachment ?

Will core-edge tension be eased in NT plasmas?

Core. L-mode edge diverted plasmas sustain high-confinement with 20% bootstrap fraction

Differences wrt previous IWL experiments

- Density does not increase with NBI fueling
- Lower Z_{eff} (1.5 vs 3)
- ITG at low k (vs TEM in IWL)
- Weak but finite power degradation

Core. Particle to energy confinement time ratio measured to be of order unity by Laser Blow-Off

Edge. H-mode transition obtained only at relaxed triangularity

16/22

Plasmas at δ_{top} = -0.4 maintain Lmode edge despite net heating exceeds 5x the expected LH power threshold

Edge. H-mode case develops shallow density pedestal

α

Narrow stability region at negative triangularity [conjectured in '80s] [S. Medvedev, NF 2015] [A. Merle, PPCF 2017]

Edge. H-mode case develops shallow density pedestal with type-I ELMs

Edge. LH power threshold dependence on δ does not appear to be due to Reynolds stress

180519 (δ_{top} =-0.4) L-mode throughout

180520 (δ_{top} =-0.2) H-mode at 2205 ms

Edge. Reduced ballooning stability limit may prevent H-mode pedestal growth

[S. Saarelma, PPCF submitted]

SOL. Heat flux widens by 50% in high-confinement L-mode phase

- Scrape-off layer power fall-off length (λ_q) inferred from IR thermography
- In the only H-mode discharge inter-ELM λ_q consistent with ITPA scaling and discharges with similar lower-half plasma shaping
- In all L-mode discharges, wider λ_q (~50-60%)
 with respect to the H-mode case

Conclusions and outlook

- High confinement L-mode discharges at Negative Triangularity have been recently extended to a diverted LSN configuration
 - → The L→H power threshold strongly increases at negative triangularity
 - Plasmas maintain L-mode profiles and routinely achieve β_N ~3 and H_{98y2}~1
 - Impurity to energy confinement time is measured to be of order unity
 - 50% wider $\lambda_{\rm q}$ in L-mode cases compared to H-mode
 - Wider λ_q , resilience to impurities, no need to stay above LH power threshold offer considerable advantages in future reactors
- Core-edge tension may be eased but need further research & cross-validation
 - Scalings for LH power threshold, confinement, λ_q , detachment

