Introduction

The important goal of the LHD project is to demonstrate the scientific feasibility of helical-system reactor. The presentation showed the recent LHD operation oriented the goal:

1. **Performance integration/optimization of high temperature plasmas**
 - Successful extension of simultaneous high T_i and high T_e.
 - Electron ITB with low divertor heat load.
 - Steady sustainment of electron ITB plasmas and the better thermal confinement in D.

2. **Thermal confinement of plasmas both with high T_i and high T_e**
 - Suppression of EIC using ECRH.
 - Higher T_i maintained with increased T_e.
 - Ion thermal confinement is sensitive to T_e/T_i.

Summary

- The important goal of the LHD project is to demonstrate the scientific feasibility of helical-system reactor.
- The presentation showed the recent LHD operation oriented the goal:
 1. **Performance integration/optimization of high temperature plasmas**
 - Successful extension of simultaneous high T_i and high T_e.
 - Electron ITB with low divertor heat load.
 - Steady sustainment of electron ITB plasmas and the better thermal confinement in D.
 2. **Thermal confinement of plasmas both with high T_i and high T_e**
 - Suppression of EIC using ECRH.
 - Higher T_i maintained with increased T_e.
 - Ion thermal confinement is sensitive to T_e/T_i.

Performance integration of high temperature plasmas

(1) The performance integration and the optimization of high temperature plasmas

- High T_i and high T_e e-ITB with detachment, SSO of e-ITB.
- Thermal confinement of plasmas, of which T_i and T_e are simultaneously high.

(2) Thermal confinement of plasmas both with high T_i and high T_e

- Suppression of EIC using ECRH.
- Higher T_e maintained with increased T_i.
- Ion thermal confinement is sensitive to T_e/T_i.

Electron ITB with divertive deuterator

- High T_i maintained with increased T_e.
- Ion thermal confinement is sensitive to T_e/T_i.

Thermal confinement of plasmas, of which T_i and T_e are simultaneously high

- MHD event Limiting T_i increase
 - T_i degradation by T_e increase
 - Higher T_i was successfully achieved
 - The increase range of EIC suppressed with reduction trapped line T_e, δT_e,
 - Higher T_i with higher T_e.
 - Lower EIC power (≤ 100 kW),
 - T_i increased with P_{ECRH}.
 - Ion thermal confinement is sensitive to T_e/T_i.

Summary

ID: #1492
(Twinned with #781)

Performance Integration of High Temperature Plasmas in the LHD deuterium operation

H. Takahashi,1,2 K. Mukai1,2, T. Kobayashi1,2, S. Murakami1,2, H. Nakano2, K. Nagakca1,4, S. Ohdachi1, M. Yoshinuma1,2, K. Ida1, R. Yanai1, Y. Yoshimura1, T. Tsujimura1, K. Tanaka1, M. Nakata1,2, Y. Yamaguchi1, R. Seki2, M. Yokoyama1,2, T. Oishi1, Y. Kawamoto1, M. Goto1,2, T. Seki1, K. Saita1, H. Kasahara2, S. Kami2, Y. Suzuki1,2, R. Sakamoto1,2, G. Motojima1,2, M. Kobayashi1,2, I. Yamada1, R. Yashahara1,2, H. Funaba1, K. Ogawa1, M. Isobe1,2, T. Tokuzawa2, A. Ejiri5, M. Osakabe1,2, T. Morisaki1,2, Y. Takeiri1,2

1. National Institute for Fusion Science, Japan, 2. The Graduate University for Advanced Studies, SOKENDAI, Japan, 3. Kyoto University, Japan, 4. Nagoya University, Japan, 5. The University of Tokyo, Japan

takahashi.hiromi@nifs.ac.jp