ID: #1492 **Performance Integration of High Temperature** (Twinned with **#781**) Plasmas in the LHD deuterium operation

H. Takahashi^{1,2}, K. Mukai^{1,2}, T. Kobayashi^{1,2}, S. Murakami³, H. Nakano^{1,4}, S. Ohdachi¹, M. Yoshinuma¹, K. Ida¹, R. Yanai¹, Y. Yoshimura1, T.-I. Tsujimura¹, K. Tanaka¹, M. Nakata^{1,2}, H. Yamaguchi¹, R. Seki^{1,2}, M. Yokoyama^{1,2}, T. Oishi^{1,2}, Y. Kawamoto¹, M. Goto^{1,2}, T. Seki¹, K. Saito^{1,2}, H. Kasahara¹, S. Kamio¹, Y. Suzuki^{1,2}, R. Sakamoto^{1,2}, G. Motojima^{1,2}, M. Kobayashi^{1,2}, I. Yamada¹, R. Yasuhara^{1,2}, H. Funaba¹, K. Ogawa^{1,2}, M. Isobe^{1,2}, T. Tokuzawa^{1,2}, A. Ejiri⁵, M. Osakabe^{1,2}, T. Morisaki^{1,2}, Y. Takeiri^{1,2}

1. National Institute for Fusion Science, Japan, 2. The Graduate University for Advanced Studies, SOKENDAI, Japan, 3. Kyoto University, Japan,

4. Nagoya University, Japan, 5. The University of Tokyo, Japan

takahashi.hiromi@nifs.ac.jp

Introduction

Introduction

- In the LHD, the D experiment was initiated in March 2017.
- -> (1) Higher performance plasmas, (2) Isotope effect, (3) High energy ion.
- Important goal:
 - -> Demonstrate the scientific feasibility of helical-system rector;
 - Optimizing plasma performance,
 - Development of operation scenario,
 - Comprehensive understanding of physics.

Performance integration of high temperature plasmas

High *T* regime was successfully extended

- > The fusion reaction by α particle, both the T_i and the T_e are high.
 - -> The turbulent is strongly affected by the T_e/T_i but is unclear. • Realize a plasma both with high T_i and high T_e , • Clarify its ion thermal confinement characteristics.
- > Optimized plasma operation using NBI & ECRH mix to (1) suppress MHD, (2) avoid T_i degradation in ECRH superposition. -> The high T regime was successfully extended.

- ✓ A steady state sustainment of

-> High power ECRH to plasma core.

- > The presentation shows the recent LHD results of the high-performance plasma experiments;
- (1) The performance integration and the optimization of high temperature plasmas.
 - -> High T_i and high T_e , e-ITB with detachment, SSO of e-ITB.
- (2) Thermal confinement of plasmas, of which T_i and T_e are simultaneously high.

Thermal confinement of plasmas, of which T_i and T_e are simultaneously high

Electron

➤ The

lon

MHD event Limiting *T*_i increase

- \succ In high T_i plasma, Trapped Energetic lons Driven Resistive Interchange Modes (EIC) is frequently excited both for H and D experiment.
- \succ The EIC accompanies the bursty loss of the high energy ions as shown in S_n .

-> Decrease in $W_{\rm p}$ and $T_{\rm i}$.

-> The EIC should be suppressed for higher T_i and the steady sustainment.

0.4

r_{eff} [m]

0.5

RIL

2.5

1.5

2

0.4

r_{eff} [m]

Summary

- > The important goal of the LHD project is to demonstrate the scientific feasibility of helical-system rector.
- \succ The presentation showed the recent LHD operation oriented the goal.
 - (1) The performance integration/optimization of high temperature plasmas,
 - Successful extension of simultaneous high T_i and high T_e . Electron ITB with low divertor heat load.
 - Steady sustainment of electron ITB plasmas and the better thermal confinement in D.
 - (2) Thermal confinement of plasmas both with high T_i and high T_e,
 - Suppression of EIC using ECRH -> Higher T_i achievement,
 - Ion thermal confinement is sensitive to $T_{\rm e}/T_{\rm i}$ -> Control moderate range -> High $T_{\rm i}$ maintained with increased $T_{\rm e}$.