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ABSTRACT ASSESSMENT OF F82H MPH BY ATTRIBUTE GUIDES

e The current status of the material property handbook for a structural design using Japanese Status and challenges in development of MPH Important to find out the color
reduFed activation ferrltlc/martensmc (RAFM) steel F82H was summarlz.eo!. In particular, the P I —————— L code of "white (blank)" items that
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_ _g PP _ Y o . P §Therma' ageing (green) s /2 /3 « post-irradiation magnetic properties
the structural design issues under the complex environmental conditions peculiar to the DEMO St e e e /e amid Fsion e At
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v' The multi-axial loading condition due to the complexity peculiar to the DEMO reactor as well as 2 I;iic:iipemes (grenegn) (v:hit; (white)
the coolant compatibility and the irradiation effect is mentioned. It is necessary to propose the Inaciation et 2 (orange) (hite) (Hhite) Long-term issues:
: : (*) color code : e Establishment of the remote-controlled
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The future work needs to address on the integration of microscopic irradiation effects to / Orange : data available, results not good enough, further optimization needed + Establishment of the irradiation
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macroscopic evaluation of structural integrity. il HatenBlieable, (N filimbar syl daes and temperature control in 14 MeV
neutron irradiation.

--> Extendedly applied to welds/joints in the next step

INTRODUCTION

e DEMO in-vessel components need to show sufficient structural integrity not only under normal ISSUES AND CHALLENGES FOR DEMO STRUCTURAL DESIGN

conditions but also under accident conditions.
. . . . e MULTI-AXIAL FATIGUE-CREEP TESTING AND EVALUATION
e |t is necessary to complete the conceptual design without any experimental verification in the _
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BRITTLE AND DUCTILE FRACTURE TESTING AND EVALUATION
TIME-DEPENDENT MATERIAL STERNGTH STANDARDS Key issue: Irradiation embrittlement accompanied by a decrease in ductility
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Rm: Tensile strength maximum force e The material strength standards were updated with increased statistical data.
FS: Fracture strength At: Percentage total extension at fracture . . [ . .
1500 © 50 i e Status of MPH with the near- and long-term issues was clarified with the attribute
- O |EA, Rp0.2 < Mod3, Rp0.2 I Trest = Tirr = 300°C IEA, Ag guides.
 OIEA, Rm O Mod3, Rm . Non-irrad. At: 16.0% | O Mod3, Ag eSeveral structural design approaches were newly introduced to consider non-
— L — 1> =T - |[EA, At . . . . . .
1000 |~ A PO % Modg, F5 o E _ M3, At proportional multi-axial loading and brittle/ductile fracture of the structure.
< : AT == g o| < : X e Important to integrate microscopic irradiation process to macroscopic structural
v - — B -
n i & O Sl . . .
0 - 1 o 10 7 ¥ o P s oy i X design toward practical DEMO design
= QD n
$ - Non-irrad. Rm: 567MPa 7 -
= 500 -Non-irad.Rp02:49aMpa TR TTTTTTTTX] G -
2 L | ——— %- ——————— -X - -
Kz ‘ 5 1 ACKNOWLEDGEMENTS
f'N'aﬁ:i'r'faa:;é'r'z'ﬁm':'é """"""""""""""""""""""""""""""" | NONIITad. AGi2.9% | e . _ o
I Teest = Tirr = 300°C - e This work was mainly supported by the Broader Approach activity under IFERC-T3PAO4 and
0 1 1 L1 1 llli ] 1 L1111 0 1 @I-_I—Z_I-I—I'T{___—T__l__l_l_l-l_Q IFERCZ_TZPAO]_.
1 10 100 1 10 100 e Parts of this work were supported by the U.S. DOE and QST collaborative project under NFE-17-

Neutron dose (dpa) Neutron dose (dpa) 06547, with UT-Battelle, LLC.



