DIII-D and International Research Towards Extrapolating Shattered Pellet Injection Performance to ITER

D. Shiraki^{1,} J.L. Herfindal¹, L.R. Baylor¹, E.M. Hollmann², C.J. Lasnier³, I. Bykov², N.W. Eidietis⁴, R. Raman⁵, R.M. Sweeney⁶, U. Sheikh⁷, S.N. Gerasimov⁸, S. Jachmich⁹, E. Joffrin¹⁰, M. Lehnen⁹, S. Silburn⁸, C. Reux¹⁰, J. Kim¹¹, J. Jang¹¹, S.J. Meitner¹, T.E. Gebhart¹, JET Contributors and KSTAR Team

¹ Oak Ridge National Laboratory
² University of California, San Diego
³ Lawrence Livermore National Laboratory
⁴ General Atomics
⁵ University of Washington
⁶ Massachusetts Institute of Technology
⁷ École Polytechnique Fédérale de Lausanne
⁸ UKAEA/CCFE, Culham Science Centre
⁹ ITER Organization
¹⁰ CEA
¹¹ Korea Institute of Fusion Energy

Presented at the 28th IAEA Fusion Energy Conference (Virtual)

May 14th, 2021

Global SPI performance predictable from validated modeling tested at DIII-D, JET, and KSTAR

- Neon SPI dynamics primarily driven by global energy balance instead of MHD
 - Predictive model tested on DIII-D data, also applied successfully to JET and KSTAR experiments
 - Empirical scalings of assimilation consistent with this
 - Multi-pellet shutdowns also described by this picture
- Neon SPI generates asymmetric TQ radiation, due to localized SPI particle source
 - Peaking factor estimates from DIII-D are close to ITER surface melt limits
- Deuterium SPI dynamics driven by MHD growth
 - Data from DIII-D, JET, and KSTAR support this picture

SPI modeling developed at DIII-D has now been tested on KSTAR and JET data

Global energy balance drives disruption dynamics during neon SPI

• Predictable from 0D KPRAD^{1,2} simulations with SPI ablation model³, which tracks:

- Species-dependent, shielding-limited ablation of SPI plume
- Main-ion and impurity ionization, recombination, and radiation
- Ohmic heating
- Inductive coupling to wall currents

- Simulations do NOT include MHD or particle transport effects
- Particle assimilation determined instead by global energy balance

Empirical scalings for CQ density are also consistent with global energy balance being the dominant physics

 For given pellet size/composition, CQ densities are predictable from only globally averaged parameters

- Regression fit from large DIII-D database
 - 0.8 MA \leq I_D \leq 1.6 MA
 - 0.1 MJ \leq W_{th} \leq 2.0 MJ

DIII-D SPI database, with 7 mm Ne pellet

Empirical scalings for CQ density are also consistent with global energy balance being the dominant physics

D. Shiraki/IAEA-FEC/May 14, 2021

 For given pellet size/composition, CQ densities are predictable from only globally averaged parameters

$$\bar{n}_{CQ} = C \cdot T_{e}^{\alpha_{T}} \cdot \bar{n}_{e}^{\alpha_{n}} \cdot W_{m}^{\alpha_{m}}$$
CQ density
Pre-SPI plasma
parameters

- Regression fit from large DIII-D database
 - 0.8 MA \leq I_p \leq 1.6 MA
 - 0.1 MJ \leq W_{th} \leq 2.0 MJ
- Early assimilation depends primarily on electron temperature
- Ohmic dissipation of W_{mag} sustains ionization later in CQ

NATIONAL FUSION FACILITY

Cooling duration trends are matched by KPRAD, governed primarily by injected neon quantity

 Cooling duration gives upper bound on time for injection to contribute to TQ mitigation

Cooling duration trends are matched by KPRAD, governed primarily by injected neon quantity

- Cooling duration gives upper bound on time for injection to contribute to TQ mitigation
- Particles unablated by this time (end of TQ) travel ballistically through CQ plasma with minimal assimilation
 - Consistent with fast camera images

6

D. Shiraki/IAEA-FEC/May 14, 2021

Unassimilated fragments

CQ rates are quantitatively predictable, determined largely by neon assimilation and resulting post-TQ plasma resistivity

- Model accurate except at lowest energy (W_{th} < 0.8 MJ)
 - Difficult to accurately model ablation rates at low temperature
- Model accounts for both plasma parameters and injection species mixture
 - Predictive capability required for ITER
 DMS to determine appropriate
 injection quantities/species
- Simulations are accurate across device size, giving confidence in projectability

7

JET K**STAR**

Dual-SPI performance matched by KPRAD, consistent with global energy balance being primary physics over 3D effects

- Synchronous pellets (Δt=0) result in less neon assimilation and a slower CQ
- 0D simulations match experiment
 by accounting for additional
 deuterium
 - Does not account for separate injection locations
- Additional density rise from second SPI matched by KPRAD

 Other physics, such as MHD or localized particle sources, are primarily important for higher-order effects (such as asymmetries)

8

D. Shiraki/IAEA-FEC/May 14, 2021

TQ radiation asymmetry due to localized injection source is observed experimentally and in extended-MHD simulations

- Asymmetries observed from comparing firstwall IR thermography for different SPI systems
- Radiation peak is broadly centered around SPI port
 - Due to rapid localized injection, rather than MHD heat flux
- Estimated TQ toroidal peaking factor = 1.9 +0.5/-0.3
 - Consistent with DIII-D NIMROD simulations¹
- Close to ITER surface melt limit² (peaking factor ~ 2)
 - Not yet known if multiple SPIs reduce peaking

¹ C. Kim, et al., This conference

-30

-20

-10

0

Asymmetry factor [%]

10

20

30

D. Shiraki/IAEA-FEC/May 14, 2021

MHD growth determines disruption timescales following deuterium SPI

- Deuterium SPI important for RE mitigation, by increasing collisional dissipation and decreasing hot-tail seed formation through dilution cooling
- Without neon impurity radiation, MHD growth becomes important process
- In all three devices, TQ occurs when n=1 MHD amplitude reaches critical value¹

¹ P.C. de Vries, et al., Nucl. Fusion **56** (2016) 026007

D. Shiraki/IAEA-FEC/May 14, 2021

A Novel Path to Runaway Electron Mitigation via Deuterium Injection and Current-Driven Kink Instability

EURO*fusion*

Produced by: C. Paz-Soldan¹

On behalf of:

C. Reux², Y.Q. Liu³, N. Eidietis³, S. Silburn⁴, K. Aleynikova⁵, P. Aleynikov⁵, S. Sridhar², E. Joffrin², A. Lvovskiy³, L. Bardoczi³, X. Du³, S. Gerasimov⁴, F. Rimini⁴, G. Szepesi⁴, V. Bandaru⁵, M. Hoelzl⁵, G. Papp⁵, G. Pautasso⁵, L. Baylor⁶, D. Del-Castillo Negrete⁶, D. Spong⁶, E. Hollmann⁷, Z. Popovic⁷, I. Bykov⁷, C. Liu⁸, C. Zhao⁸, S. Jardin⁸, S. Jachmich⁹, M. Lehnen⁹, O. Ficker¹⁰, E. Macusova¹⁰, D. Carnevale¹¹, C. Sommariva¹², A. Manzanares¹³, the DIII-D Team and JET Contributors* ¹Department of App Physics and App Math, Columbia University, NY, USA ²IRFM-CEA/Cadarache, St. Paul lez Durance, France ³General Atomics, San Diego, CA 92186-5608, USA ⁴UKAEA/CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK ⁵Max-Planck Institute for Plasma Physics, Greifswald & Garching, Germany ⁶Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ⁷University of California San Diego La Jolla, CA 92093-0417, USA ⁸Princeton Plasma Physics Laboratory Princeton, New Jersey 08543-0451, USA ⁹ITER Organization, Cadarache Centre, St. Paul lez Durance, France ¹⁰Institute of Plasma Physics of the CAS, Prague, Czech Republic ¹¹Dipartimento di Ing. Civile e Ing. Informatica, Universita di Roma Tor Vergata Rome, Italy

¹¹Dipartimento di Ing. Civile e Ing. Informatica, Universita di Roma Tor Vergata Rome, Italy
 ¹²Ecole Polytechnique Fed. de Lausanne (EPFL), Swiss Plasma Center (SPC), Switzerland
 ¹³CIEMAT, Madrid, Spain, *See the author list of E. Joffrin et al. 2019 Nucl. Fusion 59 112021

Presented at: IAEA-FEC Conference (Remote) May 14th 2021

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Contrasting Approaches Highlights Key Differences

Conventional Approach:

- Inject High-Z (Ar/Ne)
- Collisionally dissipate REs

New Approach:1,2

- Inject $D_2 \rightarrow$ collisionless
 - via high-Z expulsion and bulk recombination³
- Access bigger & faster MHD kink instabilities
- ~100% REs instantaneously dumped to the first wall

Only New Approach Avoids First Wall Heating

t-t_{IOSS} (ms) ¹C. Reux et al, Phys. Rev. Lett 2021 ²C. Paz-Soldan et al, Plas. Phys. Contrl. Fus 2019 ³E. Hollmann et al, Phys. Plasma 2020

Synchrotron Emission Confirms Full RE Termination on Sub-Millisecond Timescales

 After D₂ injection: REs can persist very long time

- Up to 5 seconds in DIII-D

EUROfusion

 After crossing MHD instability boundary REs vanish in < 1 ms

MHD Model + Orbit Following w/ Observed $\delta B/B$ Levels Confirms Nearly all RE Orbits are Lost to the First Wall

- RE orbits followed in linear MHD eigenmode structure scaled to experimental δB
- δB/B at experimentally relevant values (~ 5%) causes most orbits to be lost to the first wall

EUROfusion

MHD Model + Orbit Following w/ Observed $\delta B/B$ Levels Confirms Nearly all RE Orbits are Lost to the First Wall

- RE orbits followed in linear MHD eigenmode structure scaled to experimental δB
- δB/B at experimentally relevant values (~ 5%) causes most orbits to be lost to the first wall
- RE kinetic energy disperses into a large wetted area
 - Reduced peak heat flux

Improved Scenario for Kinetic Energy Handling

Extended MHD Modeling Reproduces Total Loss

- M3D-C1 and JOREK with RE fluid model deployed
- Near-total stochasticity found in both simulations

EURO*fusion*

C Paz-Soldan/IAEA-FEC/2021-05

Extended MHD Modeling Reproduces Total Loss Prompt RE \rightarrow Ohmic Current Transfer in DIII-D and JET

- M3D-C1 and JOREK with RE fluid model deployed
- Near-total stochasticity found in both simulations
- Prompt loss of REs drives current transfer to the bulk
- Dissipation of magnetic energy into line radiation
 - ... Not back into RE energy

Best-Case Scenario for Magnetic Energy Handling

EURO*fusion*

C. Liu et al, Phys. Plasmas (in preparation, 2021) 5 V. Bandaru et al, Plas. Phys. Contl Fus. 2021

D₂ Injection: 1) Facilitates Low Safety Factor Access 2) Accelerates Alfvenic Instability by Reducing Density

- D₂ cases tend to
 evolve to lower safety
 factor (more unstable)
 - ... not guaranteed
 - … nor essential

D₂ Injection: 1) Facilitates Low Safety Factor Access 2) Accelerates Alfvenic Instability by Reducing Density

- D₂ cases tend to evolve to lower safety factor (more unstable)
 - ... not guaranteed
 - … nor essential
- Key D₂ affect: bulk recombination
 - Decreases density
 - Shortens Alfven time
 - Accelerates MHD

New Approach Deployment in ITER DMS Will Likely Involve Multiple Loss Events (& Pellets?)

Validation Needed @ High RE Current / Gain ... in ITER Pre-FPO Phase