

P7-7(ID:1469): TECH/3-2Rb(ID: 891)

Plasma Exhaust and Divertor Designs in Japan and Europe Broader Approach, DEMO Design Activity from Chapter 4: Divertor and Power Exhaust in final report of Broader Approach (BA) DEMO Design Activity (DDA) Phase-I (2020 Feb.)

<u>Nobuyuki Asakura¹, Kazuo Hoshino², Yuki Homma³, Christian Vorpahl⁴, Fabio Subba⁵, Hiroyasu Utoh³, Youji Someya³,</u> Satoshi Kakudate¹, Satoshi Suzuki¹, Yoshiteru Sakamoto³, Ryoji Hiwatari³, Mattia Siccinio⁴, Gianfranco Federici⁴, Jeong-Ha You⁶

- 1) National Institutes for Quantum and Radiological Science and Technology (QST), Naka, Japan
- 2) Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama, Japan
- 3) National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Japan
- 4) EUROfusion Programme Management Unit, Garching, Germany
- 5) Politecnico di Torino, Torino, Italy
- 6) Max Planck Institute for Plasma Physics, Garching, Germany

E-mail: asakura.nobuyuki@qst.qo.jp

Summary and Conclusions: Common design issues for Power exhaust and Divertor have been investigated in JA and EU.

Requirements of f_{rad}^{main} and the plasma performance determined divertor design concept:

Challenges of JA (steady-state): ITER-level f_{rad}^{main} (high HH) and larger P_{sep}/R = 30-34MWm⁻¹ and EU (pulse): large f_{rad}^{main} (ITER-level HH) for ITER-level P_{sep}/R, contribute to optimize future reactor design. ⇒ Same leg length (1.6 m: longer than ITER) but different geometry (JA: ITER-like closer baffle, EU: rather open without dome and baffle) were proposed as baseline designs.

Power exhaust simulations of P_{sep} ~JA: 250-300 MW, EU:150-200MW with Ar seeding have been performed, by using JA: SONIC and EU: SOLPS5.1, with similar $q_{//}$ profile width ($\lambda_{a//}$ ~3mm): • Large divertor radiation fraction ($f_{rad}^{div} = P_{rad}^{div}/P_{sep} \ge 0.8$) was required to reduce peak- q_{target} (≤ 10 MWm⁻²) and $T_{e,i}$ in n_e^{sep} range (JA: 2-3x10¹⁹, EU:~2.8x10¹⁹m⁻³) lower than ITER. • **Divertor geometry** affected *partial detachment profile*.

Integrated design of divertor target, cassette and coolant pipe routing has been developed: water cooled ITER-like target (W-PFC and Cu-alloy heat sink) is a common baseline design.

- For a year long operation under DEMO-level n-irradiation, mechanical property of CuCrZr heat sink and Cu-interlayer is anticipated \Rightarrow restrictions of q_{target} and T_{surface} .
- EU has been developing W-MB target components to reduce stress and strengthen pipe& interlayer.
- JA: Two coolants to Cu-alloy heat sink for Target (200°C) and F82H heat sink for Baffle/Cassette (290°C) \Rightarrow Cu-alloy/interlayer concept and Operation- $T_{coolant}$ for DEMO divertor are common critical issues. Joint studies on Plasma exhaust and Divertor design are extended to BA DDA Phase-II (-2024).

Acknowledgments SONIC simulations were carried out within the framework of the Broader Approach DEMO Design Activity, using the JFRS-1 supercomputer system at CSC, IFERC, Rokkasho, Japan.

1. Introduction: Broader Approach (BA) DEMO Design Activity (DDA)

Europe (EU) and Japan (JA) are undertaking joint DEMO Design Activities (DDA): JA-HT: Joint Special Design Team for DEMO (Rokkasho, Aomori), EU-HT: Power Plant Physics and Technology (PPPT) under the EUROfusion Consortium.

The joint design work began in 2010 with the basic goals of:

- identifying the DEMO technical prerequisites and high level requirements;
- identifying the main design and challenges in physics, engineering and technology;
- addressing the challenges and developing the foreseeable technical solutions;
- identifying critical R&D activities and issues to overcome the major design issues.

\Rightarrow Final report of BA DDA Phase-I was published in 2020 Feb.

2. Common missions and similar size (8-9m) for JA and EU DEMOs

Electric generation, Fuel generation, High duty-cycle, Remote-maintenance in high neutron dose, Safety, Plasma control & Power handling in long-pulse/steady-state.

JA DEMO 2014 [1] Sakamoto, et al. IAEA FEC 2014&18 [2] Tobita, et al., Fus. Eng. Des. 2018

3. Divertor design and Power exhaust simulation

Conventional design concepts in JA & EU are based on the ITER divertor: Both DEMOs: Divertor leg is extended (outer L_{div}=1.6 m: 1.6 times longer than ITER). • JA: Baffles cover divertor plasma for large P_{sep}/R handling \Leftrightarrow EU: Open and shallow geometry (ITERlevel P_{sep}/R) to increase tritium-breeding area and reduce weight & process for remote maintenance. • JA: Dome and reflectors are installed to enhance the neutral recycling near the strike-point. EU: Dome and reflectors are simplified ("liner") to reduce fast neutron flux to cassette and VV.

SONIC (JA-DEMO) and SOLPS-5.1 (EU-DEMO) simulations have been performed :

• Exhaust power (P_{out}= JA: 250-300 MW, EU:150-200MW) is given at core-edge boundary.

SOL heat flux becomes large and narrow in DEMO simulations

SONIC sim. for JA DEMO: T_e^{sep} & T_i^{sep} increase to 0.37 & 0.83 keV: 2-3 times larger than ITER $\Rightarrow \lambda_{q//e+i} \sim 3 \text{ mm}$ for "standard" ITER values of $\chi = 1 \text{ m}^2/\text{s}$, $D = 0.3 \text{ m}^2/\text{s}$: $\lambda_{q//} = 3.4 \text{ mm}$ in ITER [10]. • Reduction to half values $(\chi = 0.5 \text{ m}^2/\text{s}, D = 0.15 \text{ m}^2/\text{s}) \Rightarrow \lambda_{q//e+i}$ is reduced to 2.6 mm[12].

Note) DEMO q_{//e+i} profiles are still wider than Eich's scaling[12] (~1.1mm) & GS model[13] (~1.5mm).

EU DEMO1(SOLPS):

 $\lambda_{q//e+i}$ ~3mm

χ_{i,e}=0.3

D=0.3

(keV) (10¹⁹m⁻³)

 P_{sep} =150MW, $n_e^{sep} \sim 2.8 \times 10^{19} \text{m}^{-3}$

 $n_{\rm e}$ mid=2.8

Distance form separatrix (cm)

[12] Eich, et al. Nucl. Fusion (2013)

[13] R. Goldston, Nucl. Fusion (2012).

[10] Kukushkin, et al. J. Nucl. Mater. (2013).

[11] Asakura, et al. Fus. Mat. Energy (2021).

χ_{i,e}=0.18 D=0.42

 $T_i mid_{=}0.73$

 T_{e} mid=0.25

SOLPS sim. for EU DEMO: $T_e^{sep} \& T_i^{sep}$ increase to 0.25 & 0.73 keV

1/0.3

0.5/0.15

near X-point

 $\lambda_{q//e+i}$: 2.6mm(χ =0.5

Distance form separatrix (cm)

mapping to midplane

 $3.0 \text{mm}(\chi = 1)$

 $\Rightarrow \lambda_{q/e+1} \sim 3 \text{ mm}$ for lower χ (= 0.18 m²/s), D (= 0.42 m²/s).

 (Wm^{-2})

JA DEMO higher-κ(SONIC)[11]:

____ →0.5

-3 -2 -1 0 1 2 3

Distance from separatrix (cm)

at midplane (10¹⁹ m⁻³)

sep~2.0x101

 P_{sep} ~235MW, $n_{\text{e}}^{\text{sep}}$ ~2x10¹⁹m⁻³, reducing $\chi \& D$

 $\lambda_{n/leti}$ near separatrix is reduced from 3.0 to 2.6mm

4. Design concepts for water-cooling DEMO divertor W-PFC & CuCrZr-pipe is common baseline design based on the ITER divertor.

• ITER-like monoblock target is the first candidate for high heat load plasma facing component. Remote maintenance concept is also common issue: JA divertor is larger weight.

• Mechanical property of Cu-alloy and interlayer (1-2 dpa) may firstly determine PFC life time (maintenance) under DEMO n-irradiation condition, while coolant-temp. is increased (130-200°C). EU: R&D of ITER-like target to reduce stress and to strengthen pipe& interlayer. JA: applying ITER-like target *near the strike-points* (lower dose). EU DEMO divertor (2019)

		EU DEMO [14, 15]	JA DEMO [6, 16]			
Number of total cassettes		48	48			
Number of divertor maintenance ports		16	16			
Weight of one cassette (ton)		11	23			
Target	PFC & Heat sink	W&CuCrZr	W&CuCrZr			
	Water T(°C)/ Pressure(MPa)	130/5	200/5			
F	Dose on pipe/fpy (dpa)	<10	<1.5			
Dome/Baffle	PFC & Heat sink	W&CuCrZr (<i>liner</i>)	W&F82H			
	Water T(°C)/P(Mpa)	180/ 3.5	290/ 15			
	Dose on pipe/fpy (dpa)	<10	<8.5			
Cassette	Material	EUROFER97	F82H			
	Water T(°C)/P(Mpa)	180/ 3.5	290/ 15			
	Dose on struct. material/fpy (dpa)	<6	<3			

JA DEMO divertor (2020)

[14] J.H. You, et al., Fus. Eng. Des. (2017). [15] J.H. You, et al., Nucl. Mat. Energy (2018). [16] Asakura, et al. Fus. Eng. Design (2018)

Design concepts of divertor water-cooling for DEMOs:

Optimization of two water routes is required. Coolant-temperature is a design issue.

Parallel cooling route for inner and outer targets is designed to avoid fast flow speed at inboard.

 JA: W-MB with CuCrZr/F82H-pipes was arranged for Plasma Facing Components with high/low heat load and low/high n-flux: $T_{coolant} = 200^{\circ}C$ is used for CuCrZr-pipe to reduce embrittlement [17].

Parameters	JA DEMO [1,2]	EU DEMO [4]	ITER(inductive)	
$R_{ m p}$ / $a_{ m p}$ (m)	8.5 / 2.4	9.0 / 2.9	6.2 / 2.0	
А	3.5	3.1	3.1	
K ₉₅	1.65	1.6	1.70	
q ₉₅	4.1	3.5	3	
I _p (MA)	12.3	18.0	14	
<i>B</i> _T / <i>B</i> _T ^{max} (T)	5.94 / 12.1	5.9 / 12.5	5.3 / 12	<u>EU</u>
Operation	Steady-state	Pulsed 2 hrs	~400 s	[3] Wenninger, e
P _{fusion} (MW)	1462	2000	500	[4] Federici, et a [5] Federici. et a
P _{el,net} (MWe)	250	500		
P _{aux} (MW)	83	50	73 (installed)	
Q	18	40	10	
$P_{\alpha} + P_{aux}$ (= P_{heat} MW)	376	450	173	
P _{sep} (MW)	294	153	~100	
<i>НН</i> _{98у2}	1.3	1.1	1.0	
$\beta_{\sf N}$	3.4	2.5	1.8	
$f_{\rm BS}$	0.61	0.39	0.15	
$f_{\rm rad}^{\rm main}$ (= $P_{\rm rad}^{\rm main}/P_{\rm heat}$)	0.22	0.66	~0.33	
	R_{p} / a_{p} (m) A K_{95} q_{95} q_{95} I_{p} (MA) B_{T} / B_{T}^{max} (T) Operation P_{fusion} (MW) $P_{el,net}$ (MWe) P_{aux} (MW) Q P_{aux} (MW) Q $P_{\alpha}+P_{aux}$ (= P_{heat} MW) H_{98y2} β_{N} f_{BS}	R_p / a_p (m)8.5 / 2.4 A 3.5 κ_{95} 1.65 q_{95} 4.1 l_p (MA)12.3 B_T / B_T^{max} (T)5.94 / 12.1OperationSteady-state P_{fusion} (MW)1462 $P_{el,net}$ (MWe)250 P_{aux} (MW)83 Q 18 $P_{\alpha}+P_{aux}$ (= P_{heat} MW)376 P_{sep} (MW)294 HH_{98y2} 1.3 β_N 3.4 f_{BS} 0.61	R_p / a_p (m)8.5 / 2.49.0 / 2.9 A 3.53.1 κ_{95} 1.651.6 q_{95} 4.13.5 l_p (MA)12.318.0 B_T / B_T^{max} (T)5.94 / 12.15.9 / 12.5OperationSteady-statePulsed 2 hrs P_{fusion} (MW)14622000 $P_{el,net}$ (MWe)250500 P_{aux} (MW)8350 Q 1840 $P_{\alpha}+P_{aux}$ (= P_{heat} MW)376450 P_{sep} (MW)294153 HH_{98y2} 1.31.1 β_N 3.42.5 f_{BS} 0.610.39	R_p / a_p (m)8.5 / 2.49.0 / 2.96.2 / 2.0A3.53.13.1 κ_{95} 1.651.61.70 q_{95} 4.13.53 l_p (MA)12.318.014 B_T / B_T^{max} (T)5.94 / 12.15.9 / 12.55.3 / 12OperationSteady-statePulsed 2 hrs~400 s P_{fusion} (MW)14622000500 $P_{el,net}$ (MWe)250500 P_{aux} (MW)835073 (installed) Q 184010 $P_{\alpha+}P_{aux}$ (= P_{heat} MW)376450173 P_{sep} (MW)294153~100 HH_{98y2} 1.31.11.0 β_N 3.42.51.8 f_{BS} 0.610.390.15

J DEMO et al. Nucl. Fusion 2017 al. Fus. Eng. Des. 2018 al. Nuc. Fusion 2019.

Power exhaust concept and Plasma performance with impurity seeding

Line-averaged n_e of both DEMOs is lower than that of ITER (1x10²⁰m⁻³) due to lower Greenwalddensity $(n^{GW} = 0.68 \times 10^{19} \text{m}^{-3}) \Rightarrow$ Fusion power (P_{fusion}) is restricted due to fuel dilution by seeding. • JA-DEMO (steady-state): Higher plasma elongation (κ_{95} :1.65 \rightarrow 1.75) increases $I_p(12.3\rightarrow$ 13.5MA), $n_{\rm e}(7.8 \rightarrow 8.6 \times 10^{19} {\rm m}^{-3}), P_{\rm fus}(1.5 \rightarrow 1.7 {\rm GW}), \text{ and radiation loss from main plasma } (f_{\rm rad}^{\rm main} = P_{\rm rad}^{\rm main}/P_{\rm heat})$ $0.22 \rightarrow 0.4$) by increasing Ar seed $(n_{\rm Ar}/n_{\rm e}: 0.25 \rightarrow 0.6\%)$ with plasma performance of $HH_{98v2} \sim 1.3$, $\beta_{\rm N} \sim 3.4$.

•EU-DEMO (pulse): ITER-level performance (HH_{98v2} ~1.1, β_N ~2.6) in Xe&Ar seeding achieves $P_{el,net}$ ~0.5GW ($P_{el,gross}$ ~0.91GW), and increases f_{rad} ^{main} to 0.65 in order to reduce P_{sep} to ~1.2x P_{LH} .

Note) Concept foreseeing steady-state (Flexi-DEMO: $R_p/a_p = 8.4/2.7m$, $P_{fusion} = 2GW$) is recently proposed by EU [5].

JA DEMO: Divertor operation in low density ($n_e^{sep} = 2-3x10^{19} \text{m}^{-3}$) Heat load can be reduced within the operation range $(q_{target} \le 10 \text{ MWm}^{-2})$ for f_{rad}^* div~0.8

keV)

- In each density scan, Ar seeding rate was adjusted to obtain a given f_{rad}^{*} ($P_{rad}^{div} + P_{rad}^{sol}$)/ P_{sep} .
- Higher- κ (P_{sep} ~235MW, f_{rad}^{*} ~0.8) reduces q_{target} (\leq 6 MWm⁻²), and allow enough operation margin.
- JA DEMO 2014 (P_{sep}~283MW, f*_{rad}^{div}~0.8):

Decreasing detachment width, and increasing T_i and T_e of the attached plasma.

 \Rightarrow peak- q_{target} is increased, and margin of the power handling ($\leq 10 \text{ MWm}^{-2}$) is reduced.

• *Lower f**_{rad}^{div} ~0.7 (*P*_{sep}~235 and 283 MW) cases:

\Rightarrow higher n_e^{sep} (>2.3x10¹⁹m⁻³ for *DEMO higher*- κ , >2.7x10¹⁹m⁻³ for *DEMO 2014*) is required.

• EU: T_{coolant} is reduced (130°C) to increase the critical heat flux larger than 48 MWm⁻² (for 150°C) [18]. T_{coolant}(180°C) for cassette (EUROFER97) to ensure sufficient fracture toughness at n-damage (<6 dpa).

Note) Total $P_{div}^{thermal}$:350MW + $P_{div}^{nuclear}$:120 MW is assumed. [17] Li-Puma, et al, Fus. Eng. Des. (2013). [18] You, et al, Fus. Eng. Des. (2018)

Heat analysis of W-monoblock and CrCrZr heat sink for JA DEMO Acceptable power load depends on heat load components and target design

Heat load profile (plasma, radiation&neutral, nuclear heat) is applied to ITER-like fish scale target: peak heat load to flat tile (9.1 MWm⁻²) corresponds to 13.5 MWm⁻² to the wet area.

- The peak heat load is a critical, i.e. just below recrystallization temperature of W (1200°C). Irradiation-creep/softening of CuCrZr-pipe (351°C) is also anticipated
- Max. heat flux from the pipe to coolant (18MWm⁻²) is well below Critical Heat Flux (35MWm⁻²). Power exhaust by 200°C water is acceptable even for larger heat load on W (surface- $T_W > T_{recystalization}$).

Power exhaust concepts and challenges for JA and EU DEMOs

Divertor power handling is determined by requirements of f_{rad}^{main} and the plasma performance.

JA DEMO challenge (steady-state op.):	EU DEMO challenge (pulse op.):	
Lower I_p and higher <i>HH</i> with ITER-level $f_{rad}^{main} \Rightarrow$	Higher I_p and ITER-level <i>HH</i> with large f_{rad}^{main} by	
Large divertor power handling: $P_{sep}/R \sim 30$ MWm ⁻¹	high-Z seeding \Rightarrow ITER-level $P_{sep}/R = 17 MWm^{-1}$	

JA DEMO higher- κ proposal (κ_{95} =1.75) [6] rather than JA DEMO 2014 (κ_{95} =1.65) [1] is shown: having advantages on power exhaust in main plasma and divertor.							
	Parameters	JA DEMO higher-κ [6]	EU DEMO-1 [3]				
ıst	line- <i>n</i> e ^{main} (10 ²⁰ m ⁻³)	0.86	0.87	neat)			
	n ^{GW} (10 ²⁰ m ⁻³)	0.73	0.72	in/P			
	$n_{ m imp}^{ m main}/n_{ m e}^{ m main}$ (%)	0.6 (Ar)	0.039 (Xe)+Ar	adma			
exhai	$P_{\text{heat}}(P_{\alpha}+P_{\text{aux}}, \text{MW})$	435	457	f _{rad} main (=P _{rad} main/P _{heat})			
Power exhaust	P _{rad} ^{main} (MW)	177	306	nain			
	$f_{\rm rad}^{\rm main}$ (= $P_{\rm rad}^{\rm main}/P_{\rm heat}$)	0.41	0.67	frad ⁿ			
	P _{sep} (MW)	258	154				
	P _{sep} /R _p (MWm ⁻¹)	30	17				

Without control of

Note: $f_{LH} \propto B_T^{-1.5} R_n^{-0.1}$

EU DEMO: Divertor power handling by Ar seed for $P_{sep}/R = 16-22$ MWm⁻¹ Heat reduction was achieved for all cases by increasing $C_{Ar}^{SOL} (= n_{Ar}/n_{e})^{SOL} = 0.5-2.5\%$

Geometry effect on plasma profile: partial detachment was not clearly seen in the open geometry. **Baseline** (P_{sep} =150MW): heat reduction ($q_{target} \le 10$ MWm⁻²) was achieved by increasing $f_{rad}^* \ge 0.7$. \Rightarrow Low $T_e^{\text{div}} (\leq 5 \text{eV})$ was also produced over wide outer target for $f_{\text{rad}}^* \leq 0.8$ ($C_{\text{Ar}}^{\text{sol}} \geq 0.8\%$).

Larger P_{sep} case: q_{target} reduction was achieved ($f_{rad}^{*} \ge 0.75$) \Rightarrow low T_{e}^{div} ($\le 5eV$) was required in higher f_{rad}^{*} ≥ 0.9 ($C_{Ar}^{sol} \geq 2\%$). Detachment ($T_{e}^{div} \sim 1eV$) is seen in very high f_{rad}^{*} (≥ 0.93).

In addition, Elasto-plastic stress analysis was performed by repeating higher heat load (max. q: 15MWm⁻², W surface: 1400°C) \Rightarrow Mechanical strain on CuCrZr pipe (~0.25%) was not critical, while Max. Temp. became 365°C.

Development of water-cooled target components for EU DEMO Mechanical property of heat sink and joint/interlayer is a key for Cu-alloy application

Development of candidate target concepts based on W-monoblock and Cu-alloy technologies: • 5 divertor target concepts are developed for water-cooled targets:

All are based on a Cu-alloy pipe with swirl tape to increase the heat transfer at the pipe wall:

Target concepts

Composite block (W tiles)

Baseline:

• ITER-like MB & CuCrZr pipe with Cu-interlayer → Reducing thickness and width to reduce thermal stresses and prevent vertical cracking.

Reducing stress and strengthen pipe & interlayer: • Thermal break interlayer /CCFC

• W wire-reinforced Cu composite pipe / IPP • Functionally graded (W/Cu) interlayer /CEA • W particle-reinforced Cu composite heat sink block/IPP

Note) He-cooling by multi-jet pipe /KIT is an option.

 Mock-ups of each concept have been fabricated Cu (1mm) and 100-level cyclic tested in a high-heat flux facility at 20-25 MW/m² with 20°C water \rightarrow 130°C water

ITER-like (W monoblock) CuCrZr pipe Cu (1 mm) Thermal break (W monoblock) Cu (1.5 mm) bores CuCrZr pipe Composite pipe (W monoblock) None Wf/Cu pipe FGM interlayer (W monoblock) W/Cu (0.5 mm) CuCrZr pipe W_p/Cu block

Water cooled target concept

Interlayer

Heat sink

Divertor target concepts for EU DEMO

None

ITER-like Thermal break Composite pipe Graded interlae (Cu interlayer) (bores, notch) (W wire/Cu) (W particle/Cu)

He-cooling: pipe-multi-je Flat-W-tiles & (W/W-laminate) Wp/Cu composite block

[19] J.H. You, et al., J. Nucl. Mater. (2021).