

(New) Materials and Components for the DEMO Divertor

R. Neu^{1,2}, A.v. Müller¹, B. Curzadd^{1,2}, J. Riesch¹, J. W. Coenen^{3,4}, H. Greuner¹, T. Höschen¹, K. Hunger¹, G. Schlick⁵, U. Siefken⁶, E. Visca⁷, J.H. You¹

¹Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany
 ²Technische Universität München, 85748 Garching, Germany
 ³Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, 52425, Jülich, Germany
 ⁴Department of Engineering Physics, University of Wisconsin Madison, WI 53706, Madison, USA
 ⁵Fraunhofer IGCV, 86159 Augsburg, Germany
 ⁶Louis Renner GmbH, 85232 Bergkirchen, Germany
 ⁷ENEA, 00044 Frascati RM, Italy

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Boundary conditions for plasma facing components (PFCs)

deep cracking observed for ITER mock-ups during cycling at 20 MW/m² due to low cycle fatigue (crack initiation) and brittle behaviour during cool down

28th IAEA FEC, May 13, 2021

[M. Li FED 101 (2015) 1] R. Neu

Concepts for improving PFCs for the European DEMO

- optimisation of shape/size \rightarrow lower temperature
- thermal break concept \rightarrow homogenisation of temperature
- adaption of CTE by **functionally graded material**
- improvement of material properties (strength, toughness) by composites / fibre reinforcement

\Rightarrow combination of concepts can further optimise function and lifetime

[J.H. You, J. Nucl. Mater., 544 (2021) 152670]

reduction of stresses

Extrinsic toughening mechanisms in fibre reinforced materials:

- \rightarrow stress redistribution by local energy dissipation
- \rightarrow effective below DBTT & under embrittled state

[J. Riesch, Phys. Scr., T167 (2016) 014006]

W fibres and yarns

W fibres with small diameter (16 – 150 µm)

- highly deformed/fine grains:
 high strength, ductile already at room temperature
- potassium doping: stable against recrystallization up to ~ 2000 °C
- yarns show increased flexibility and confirm higher strength of thinner fibres

Ductile behaviour of irradiated W fibres

Exceptional properties (strength & ductility)

- \Rightarrow ideal ingredient for composites for hightemperature applications
- \Rightarrow successful development W_f/W and W_f/Cu composites

Small fibre diameter (\emptyset =5 µm) allows damage of complete volume by W ions (irradiation by 20.5 MeV W-ions simulating n-damage)

\Rightarrow no strong degradation up to 10 dpa

1 dpa

R. Neu

[J. Riesch, 17th Int. Conf. on PFMC, 2019, Eindhoven]

Production of bulk tungsten fibre reinforced tungsten (W_f/W)

Production of W_f/W by Chemical Vapour Deposition (CVD, decomposition of WF_6)

- layers of woven W wire fabric (distance 200 300 μm): K-doped, ø 150μm, 1μm Yttria interface layer
- fibre volume fraction ≈ 10 30%, unidirectional orientation
- density \leq 99%

Samples for mechanical and high heat flux testing

R. Neu

Testing of mechanical properties of W_f/W

28th IAEA FEC, May 13, 2021

W fibre-reinforced Cu heat sink

cylindrical multi-layered braiding made out of continuous W fibres or yarns with a nominal diameter of 50 µm

micro-sections of a W_f - Cu heat sink pipe produced by means of liquid Cu melt infiltration

[A.v. Müller, Phys. Scr. T171 **2020** 014003]

SACMARLE 3 IVpe4-108 IPPD12

brazed joint between W mono-blocks and W_f - Cu heat sink pipe

High heat flux testing of W_f - Cu PFC mock-ups

- hot-water cooling conditions: 130°C, 40 bar, 16 m/s \rightarrow DEMO relevant
- 1000 load cycles at 20 MW/m² without indication of failure
- 100 load cycles at 25 MW/m² screening up to 32 MW/m² (@ 20° C, 10 bar) [A.v. Müller, Phys. Scr. T171 2020 014003]

recrystallized surface layer

deformation

 no damage of bonding & W_f - Cu tube after 1000 cycles at 20 MW/m²

28th IAEA FEC, May 13, 2021

Use of additive manufacturing for topology optimisation

Reduction of thermal stresses by a factor of 6!

Note: extremely high flexibility for geometry, here deliberately classical geometry for comparison!

final avg. composition 61% W 39% Cu

W

Cu

Additive manufacturing of actively cooled W components

- New composite materials can help to improve DEMO PFCs to allow for larger operational margin (higher cooling water temperatures / higher thermal loads) and lifetime
 - increasing **high temperature strength of Cu** in the cooling structure, ameliorating consequences of Cu(-alloy) neutron damage
 - increasing fracture toughness of W
 - adjusting the thermal missmatch between armour and cooling sink
 - tailored material distribution by additive manufacturing to reduce thermal stresses
- Very promising behaviour of composites materials and composite PFCs in high heat flux tests

Outlook:

First results for W fibres and W_f-Cu confirm superior behaviour under neutron irradiation!