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— Optimization via torque response matrix
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A small non-axisymmetric magnetic field can greatly change
tokamak performance and thus must be under control

« Atokamak has always intrinsic non- NSTX Example
. . . Error fields driving locked modes
axisymmetric (3D) error fields (EF)
— Due to imperfect magnets and components M x 200
. . Dynamic twist in il
« A 3D field can also be introduced on OH-TF center-stack

purpose
— Mostly for instability control, as highlighted by
"RMP ELM control” in tokamaks
* In either case, a 3D field as small as
6B/B=10-3~10-4 can greatly degrade or 8Bnormal
even disrupt tokamak plasmas, if not N distribution
properly controlled or judiciously used |

« Any dangerous or unnecessary 3D field
components must be compensated
— Error Field Correction (EFC)

Error field correction leading to
better performance
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Recent progress on plasma response and MHDs is offering
a reliable leading-order EFC scheme

Shape of dominant resonant field distribution
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* |deal MHD clearly shows which 3D field is most resonant with tokamak plasmas
and thus must be compensated if not necessary
— Leading to a major change in EFC approach, via “resonant overlap” field
= Extensively validated in tokamak devices including DIII-D [LanctotPOP10, Paz-SoldanPOP14]
» Present ITER EFC strategy: Reduce overlap with dominant resonant field below
“EF penetration” threshold
— Two-fluids MHDs then can offer prediction of EF penetration threshold in practice
= See N. Logan’s poster for resonant EFC summary [TM1 (Hu), EPEC (Fitzpatrick)]

®) PPPL pmI-b KSTAR 28t IAEA FEC, EX/4, J.-K. Park



Residual EFs may not be disruptive in stable operating
conditions but shown to be still problematic transiently

COMPASS studies with the high-field-side proxy-EF show

— Locked modes could indeed be avoided by resonant EFC, but large non-resonant
residual EFs could still be disruptive during L-H transition [MarkovicEPS2018]

Successful EFC against locked modes but not for L-H transition

HFS EF +

HFS EF LFS EFC

NSTX-U and DIII-D also showed that NTV rotational damping by residual
EFs which can eventually cause instability issues [PazSoldanPOP14, ParkAPS18]

Needs a complementary EFC approach
for residual EFs which often have greater non-axisymmetry and create non-linear effects
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Minimizing all the prominent residual EF effects
reminisces optimization towards a quasi-symmetry

+ Eliminating all static EF effects in guiding center plasmas is in principle achievable by:

-0 [NurenbergPLA88,BoozerPPCF95]

Variation in the field strength |5 B | particles

* Ideally, there is a linear path to perturb a * However, it is the force balance in

|6B] ~b - (Fx(ExBy) + £ -VB,) > 0 €=  5F[E] = 0
—r  __TF

Eulerian Lagrangian
changes in a fixed space  changes with field lines

* These two are NOT compatible in general as well known [Garron&BoozerPFBY]
from more general 3D geometry

Nonetheless, quasi-symmetric optimization can be performed in average
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Self-consistent perturbed equilibria with neoclassical transport offers

a unique QS optimizing scheme, via torque response matrix

Perturbed equilibria with non-adiabatic pressure (including 3D coils):

SF[E] = 6Fgea[E] - V- 1[E] = 0

Neoclassical torque is also given by integrating:
7, =Im [nj dx3(& - 8F[§])
plasma

Torque minimization leads minimized 3D neoclassical particle, momentum, heat
transport, although its momentum part (called NTV) is mostly pronounced in tokamaks

Ty X Iypy X Qua ~ 0
Full solutions provide torque response matrices to given 3D fields or coils
7, () = (Fourier modes)* - T(y) - (Fourier modes)

= (Coil currents)® - T(y) - (Coil currents)

Method above has been implemented in general perturbed equilibrium code (GPEC)
which has been used as a primary tool to design QSMP configurations
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Torque response matrix contains all the information of
neoclassical torque that a tokamak can drive with available coils

 All possible neoclassical torque that a tokamak (e.g. KSTAR) can drive using their 3
rows of coils are given by

— 3x3 matrix, per each n, per a target equilibrium and its kinetic profiles

. , , Trr(W)  Tr@)  Trp(y) 1Tel:¢T
) = (e~ Iye M [5e=98) | Tyr ) Tyum@) Tup@) |- | Lyedm
Ter() Tepu@) Tpp() Ige i¢p

* Its eigenvector for the minimum eigenvalue of the torque-coil response matrix: The
best possible quasi-symmetric magnetic perturbation (QSMP) in a tokamak

KSTAR n=1 QSMP DIlI-D n=1 QSMP
IVCC Top caoil

IVCC Bottom coil
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QSMP is clearly contrasted to
two other categories of small 3D fields in tokamaks

* RMP creates strong resonant response (at the rational surfaces)
« NRMP can drive substantial non-resonant NTV, but without resonant response

* QSMP suppressed both resonant and non-resonant response
while maintaining the same power norm of field amplitudes or currents

(a-1) KSTAR #22972 (a-2) KSTAR #22972
\ v = | NRMP | o
Field ! = QSMP Orbit resonance
. resonance | 't& : (‘UE"‘O)} : !
s 3 N
< 0.05 4§ | N
o 0.1
=
0.00== 08,
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QSMP optimized by GPEC indeed minimizes variation in the field
strength at best upon constrained by force balance and torque

* GPEC finds the best possible Variation of field strength for KSTAR #22972
QSMP by minimizing total 10°| RMP NRMP QSMP 3 NN
torque, within force balance = ' A

S = =
L)

« Resulting in minimization of =107
plasma response and -
variation in the field strength g

~
X

 Resulting in optimization of g
displacement spectrum s

=
6, =2 =5 F¢.5-T-E~0 =
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QSMP designed and tested in KSTAR indeed did not bring
any meaningful effects despite the large amplitudes

+ RMP caused density pumping, confinement degradation, and rotational damping
— Could suppress ELMs if further optimized

* NRMP induced rotational damping only (without density pump-out)

* QSMP did not show any degradation, even with the maximum currents applied (10kAt)

(a) Plasma current [100kA] and NBI power [MW]

6 :_IP =
= =
2P =
o £
(b) 3D field amp. [kA] and phs. [rad]
F TOP i
- _A;np = BOT 3
0 Ev < TOP S pa e ]
M
-5 [Phase BOT -
(c) Density [10"® m™] and Temperature [keV]
35 En, Density pumping E
3.0fT 2
25) " -
(d) Toroidal rotation [krad/s] & degradation
80 No effect Rofation damping Rotation dampin
70 2
60 .
50 :
4 QSMP 6 NRMP 8 RMP 10
Time [s]

Pner~3MW,
TNB|~2.9Nm,
I=0.5MA, B;=1.8T,
Pn~1.8, ggs~9,
n.~3.4e19m-3,
T,(Core)~ 2.2keV,
T¢(Core)~2.3keV,
o,~100krad/s

[S. M. Yang, 2019 KSTAR Campaign]
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QSMP designed and tested in KSTAR indeed did not bring
any meaningful effects despite the large amplitudes

+ RMP caused density pumping, confinement degradation, and rotational damping

— Could suppress ELMs if further optimized

* NRMP induced rotational damping only (without density pump-out)
* QSMP did not show any degradation, even with the maximum currents applied (10kAt)
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(e) Comparison of total torque
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[S. M. Yang, 2019 KSTAR Campaign]

®) PPPL pmI-b KSTAR 28t IAEA FEC, EX/4, J.-K. Park

15



QSMP did not induce any visible effects in DIII-D either
despite strong 3D response expected otherwise

* RMP caused density pumping, confinement degradation, and rotational damping
— Eventually caused a locking due to strong resonant response

* NRMP induced rotational damping only

* QSMP did not show any degradation, despite maximum currents applied (5kAt)

(a) RMP (#178622) (b) NRMP (#178621) (c) QSMP (#178620)
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QSMP did not induce any visible effects in DIII-D either
despite strong 3D response expected otherwise

RMP caused density pumping, confinement degradation, and rotational damping

— Eventually caused a locking due to strong resonant response
NRMP induced rotational damping only

QSMP did not show any degradation, despite maximum currents applied (5kAt)

Toroidal rotation [krad/s] Electron density [107°m3]

(a) RMP (#178622)

(b) NRMP (#178621)

(c) QSMP (#178620)
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QSMP remains also safe
through early ramp-up and L-H transitions

* QSMP for a new 2020 KSTAR
target is designed and applied
during the ramp-up, with the
maximum amplitude

» Did not leave any influence in

the ramp-up and through L-H ¢ 4_ 7 '
transition, compared to the ?\e’\e‘ W i
reference without 3D fields 2 MHD
‘M T
\ HIR
1L
4

* QSMP plasma in fact showed
better confinement after L-H
transition which will be further
investigated
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L-H transition with marginal power remained intact by
QSMP, although disrupted by NRMP

: : DIII-D #178600 #178609 #178610
QSMP applied also to a marginal H- S

mode in DIII-D 6 . = :
* @L-H: 35_'u NRVP E
— Pne~ 1MW, Tyg~0.83Nm, of Ref : | - ]
— 1p=1.2MA, B;=1.8T, X (b) Densnty}lno m?] :
— Bn=0.24~1.5, qg5~4.0, 3: : ]
— Ne~2.2e19m3, Te~1.7keV, o,~17krad/s of

(c) BétaN

. 155
« No impact by QSMP, although 100
NRMP disrupted plasma through L-H g:gi—
— As observed in COMPASS ! (d) Rotation|[100krad/s] :
— In DIII-D, locked modes were . o :
observed before L-H transitions g'zg Sl :
= Indicating NRMP is not entirely optimized : 15 20 25 3.0
= Still, showing value of QS optimization Time [s]
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Torque response matrix offers fundamental approaches to design
coils and create large quasi-symmetric tokamak deformation

+ Torque mode matrix reveals the second dominant group which should be
targeted in subsidiary residual EF correction

+ If coils are already designed, torque-coil matrix can be used to deform EF to a

quasi-symmetric residual using the correction coils

Torque mode matrix

Torque-coil matrix
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* Arrow indicates phase
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QSMP can also be used to find and investigate
the effective RMP with minimized transport

(a) IP [100kA], 3D field amp. [kA] and phs. [rad]

Phasing = =
/ p 5 [QSMP RMP E
135¢ f E I — 3
, y Mw

) (b) Density [10" m*], Te [keV]

oc=NOAN cbowo
4

(c) Toroidal rotation [krad/s]
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+ Benefits of such near-QSMP 2¢ =
suppressing ELMs must be CIT- E
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QSMP will be used to find a 3D field that can create heat flux
spreading without degrading plasma performance

2 T T (a) IP [100kA], 3D field amp. [kA] and phs. [rad]
—]—26000_4.1s 6 E
15l ¥ 26000_7.1s || R 3E QSMP RMP E
& s 1-26000_8.65 8 of ! =
x> 1t _T26000_10.1s(1 6L ase E
s Bl 7 (b) Density [10"° m*], Te [keV]
< o0s ‘ - \QSMP tp RMP 5
x 0 s ; 0 4 Ne
= = = 3
+ - = N e ~
E 0 | X e g f T,
QSMP Referen 0 : _
05 . . . . . (c) Toroidal rotation [krad/s]
1.42 1.44 146 148 15 152 154 200 E
150- Vy(core) 3
R (m - E . 3
m > 100¢ VT(Mld)m%ﬂ.—., JA& ;
50F E
0t E

» Heat flux gradually spreads and
then increases from QSMP to an
ELM-suppressing RMP

— As expected from increased edge

Heat Flux
Contour

resonance 2f E
— QSMP could be used to find an 5,0 | ! E
optimum trade-off between heat of J E
flux spreading and performance 0 2 a 6 8 10 12

Time [s]
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Summary

Residual non-axisymmetry after EFC against dominant resonant mode can still
cause a significant impact depending on cases (e.g. NSTX-U or COMPASS)

As a complementary approach, residual non-resonant EF can be further
optimized towards quasi-symmetry

Such a quasi-symmetric magnetic perturbation (QSMP) has been designed
using GPEC torque matrix and tested in KSTAR and DIII-D using its available
coils

No negative effects were found with QSMPs in the studied cases in contrast to
RMP or NRMP, despite the large overall amplitudes of perturbations

The results indicate QSMP renders a group of safe non-axisymmetric fields,
showing the feasibility of QS even in a perturbed tokamak
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