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1. Background: Possible Mechanism of ITB Formation

v' Internal Transport barrier (ITB) has a crucial key to achieve a high-performance plasma

confinement.

v Some possible mechanism for ITB formation are proposed [ida, PpcF-2018] @S
(1) Positive feedback loop via E X B mean flow [sakamoto, NF-2004] [vu, NF-2016]
(2) Positive feedback loop via safety factor profile (BS current) [triksson, PrL-2002]
(3) Positive feedback loop via Shafranov shift + EM stabilization [stacbler, NF-2018]

v" By our full-f gyrokinetic code GKNET, we found that momentum injection can

mean E X B flow through the radial force balance, which can break the ballooning

symmetry of turbulence, leading to ITB formation. [imadera, 1AEA-2016]
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v' Stable local maximum of mean E, are formed near q,,;,, surface only in
kinetic electron cases.

Radial profiles of each term in radial force balance

reduce momentum diffusion in this case, which can keep the stable
local maximum of mean E.. through the radial force balance.

v’ Counter-rotation is also observed in negative magnetic shear region
in case (B).
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v’ In flux-driven ITG turbulence with kinetic electrons, the co-current toroidal rotation
can balance with E,., of which shear becomes strong just inside of q,,,;,, surface.

v On the other hand, in ITG/TEM turbulence with kinetic electrons, E,. is reversed in
negative magnetic shear region, which makes its shear stronger and pressure

gradient steeper.

7. Summary & Future Plans

Summary
v We have performed the flux-driven ITG/TEM simulation in reversed magnet

v In the presence of both ion and electron heating, a counter-intrinsic rotation by TEM turbulence is driven in negative magnetic shear region, leading to stronger E.

v' As the result, ion turbulent thermal diffusivity in flux-driven
ITG/TEM case spontaneously decreases to the neoclassical
transport level among 0.4a, <7r < 0.6a,, where E, shear
becomes steep.

ic shear configuration by using hybrid kinetic electron model.

shear and the resultant spontaneous larger reduction of ion turbulent thermal diffusivity.

Discussion

v" An increase of counter intrinsic rotation in the narrow region of the ITB located just inside of q,,;,, is also observed in JT-60U reversed magnetic shear discharge with

balanced momentum injection [sakamoto, NF-2001]. -> Qualitative agreement!

v’ It can conclude that counter intrinsic rotation is a possible candidate to trigger the positive feedback loop via E X B mean flow, leading to spontaneous ITB formation.
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v' However, in our previous study based on the original GKNET with adiabatic electron,
enough large co-momentum injection is required for ITB formation in flux-driven ITG
turbulence. In addition, some experiments indicate the importance of counter-

v In this study, we have introduced hybrid kinetic electron model |[tanti, 1p-2018] and
investigated spontaneous ITB formation in flux-driven ITG/TEM turbulence.

[Ishizawa, PoP-2019]
[Ishizawa, this conference,
TH/4-2]
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v We consider (A)ITG dominant and (B)ITG/TEM dominant cases.

v’ Safety factor profile is reversed, which local minimum is located at
r = O.6a0.

v Only heat source is applied, which does not provide particle and

6. What is the Origin of Co-/Counter-Rotation?

Decaying ITG turbulence in CBC case
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Decaying TEM turbulence in CBC case
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v’ The finite ballooning angle of the global mode structure arising from

the profile shearing effect [kishimoto, Ppcr-1998] induces the residual
stress part of momentum flux [camenen, NF-2011].

v’ The sign of the ballooning angle between ITG and TEM turbulence is

opposite so that the direction of intrinsic rotation is reversed.

TEM in the negative magnetic shear region.

[ Future plans ]

v’ By reflecting bootstrap current
and shafranov shift effects to
the analytical magnetic
equilibrium [imadera, PFrR-2020] iN
time, we can take them into
account, which can help us to
understand the overall positive
feedback loop.

Fig. A typical 3D eigenfunction

v The steep electron temperature gradient is considered to destabilize

of toroidal ITG mode in a non-

circular tokamak configuration
with Ko = 15, 60 = 0.3.
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