

Spontaneous ITB formation in gyrokinetic flux-driven ITG/TEM turbulence

E-mail address: imadera@energy.kyoto-u.ac.jp

Kenji Imadera and Yasuaki Kishimoto

Graduate School of Energy Science, Kyoto University, Kyoto, Japan

1. Background: Possible Mechanism of ITB Formation

- ✓ Internal Transport barrier (ITB) has a crucial key to achieve a high-performance plasma confinement.
- ✓ Some possible mechanism for ITB formation are proposed [Ida, PPCF-2018] as (1) Positive feedback loop via $E \times B$ mean flow [Sakamoto, NF-2004] [Yu, NF-2016] (2) Positive feedback loop via safety factor profile (BS current) [Eriksson, PRL-2002] (3) Positive feedback loop via Shafranov shift + EM stabilization [Staebler, NF-2018]
- ✓ By our full-*f* gyrokinetic code *GKNET*, we found that momentum injection can change mean $E \times B$ flow through the radial force balance, which can break the ballooning symmetry of turbulence, leading to ITB formation. [Imadera, IAEA-2016]

GK quasi-neutrality condition

2. Motivation

 \checkmark However, in our previous study based on the original GKNET with adiabatic electron, enough large co-momentum injection is required for ITB formation in flux-driven ITG turbulence. In addition, some experiments indicate the importance of counterintrinsic rotation. [Sakamoto, NF-2001]

Purpose of this work

✓ In this study, we have introduced hybrid kinetic electron model [Lanti, JP-2018] and investigated spontaneous ITB formation in flux-driven ITG/TEM turbulence.

t v _{ti} /ł	ζ 0
----------------------	------------

full-f

3. Toroidal Full-f Gyrokinetic Code GKNET

Physical model

- \checkmark GKNET-HE is based on full-f gyrokinetic model, which trace turbulence and background profiles self-consistently.
- ✓ External heat source and sink are introduced so that the turbulence is not decayed but sustained over the confinement time (flux-driven simulation).
- \checkmark To study flux-driven ITG/TEM turbulence, we have introduced the above hybrid kinetic electron model [Lanti, JP-2018].

account by using 20 point average on gyro-ring.

4. Numerical Condition

			Parameter	Value		Parameter	Value	
0)	$(m,n) \neq (0,0)$		a_0/ρ_i	150		$ u_i^*$	0.1	
nse	Adiabatic response		a_0/R_0	0.36		$ u_e^*$	0.1	
nse	Kinetic response		$(R_0/L_n)_{r=a_0/2}$	2.22		$ au_{src,i}^{-1}$	0.02 -> 4[MW]	
			$\left(\frac{R_0}{L_{T_i}}\right)_{r=a_0/2}$	10	-	$ au_{src,e}^{-1}$	(A) 0 -> 0[MW] (B) 0.02 -> 4[MW]	
ator			$\left(\frac{R_0}{L_T_e}\right)_{r=a_0/2}$	(A) 6.92 (B) 10		τ_{snk}^{-1}	0.1/0.36	
			Δ_r	45				
)	Field Energy (New)		$\sqrt{m_i/m_e}$	10				
Field Energy (Old) Total Energy (New) Total Energy (Old) Cotal Energy (Old) Kinetic Energy (New) Kinetic Energy (Old) 0 200 400 600 800 1000 tv_{ti}/R_0			(A) ITG case (A) ITG case			(B) ITG/TEM case		
	al vetertie a (viakt)		0 0.2 0.4	0.6 0.8 1		0 0.2 0	J.4 U.6 U.8 1	
proidal rotation (right)			r/a_0			r/a_0		

✓ We consider (A)ITG dominant and (B)ITG/TEM dominant cases.

 \checkmark Safety factor profile is reversed, which local minimum is located at $r = 0.6a_0$.

Toroidal Electrostatic Hybrid Electron

 \checkmark Stable local maximum of mean E_r are formed near q_{min} surface only in kinetic electron cases.

Radial profiles of each term in radial force balance

✓ Large co-rotation is driven around q_{min} surface in case (A-2) and (B). \checkmark According to the momentum transport theory, $\langle \Pi_{RS} \rangle_{\theta\phi} = \alpha I E'_r +$ $\beta I' + \gamma \langle k_{\theta} k_{\phi} \phi_k^2 \rangle_{\theta \phi}$ [Kwon, NF-2012], the first and second terms can reduce momentum diffusion in this case, which can keep the stable local maximum of mean E_r through the radial force balance.

✓ Counter-rotation is also observed in negative magnetic shear region in case (B).

 \checkmark Only heat source is applied, which does not provide particle and momentum.

6. What is the Origin of Co-/Counter-Rotation?

 \checkmark The finite ballooning angle of the global mode structure arising from

- r/a_0 r/a_0 r/a_0
- \checkmark In flux-driven ITG turbulence with kinetic electrons, the co-current toroidal rotation can balance with E_r , of which shear becomes strong just inside of q_{min} surface.
- \checkmark On the other hand, in ITG/TEM turbulence with kinetic electrons, E_r is reversed in negative magnetic shear region, which makes its shear stronger and pressure gradient steeper.
- r/a_0 r/a_0
- \checkmark As the result, ion turbulent thermal diffusivity in flux-driven ITG/TEM case spontaneously decreases to the neoclassical transport level among $0.4a_0 < r < 0.6a_0$, where E_r shear becomes steep.
- the profile shearing effect [Kishimoto, PPCF-1998] induces the residual stress part of momentum flux [Camenen, NF-2011].
- \checkmark The sign of the ballooning angle between ITG and TEM turbulence is opposite so that the direction of intrinsic rotation is reversed.
- ✓ The steep electron temperature gradient is considered to destabilize TEM in the negative magnetic shear region.

7. Summary & Future Plans

Summary

✓ We have performed the flux-driven ITG/TEM simulation in reversed magnetic shear configuration by using hybrid kinetic electron model.

 \checkmark In the presence of both ion and electron heating, a counter-intrinsic rotation by TEM turbulence is driven in negative magnetic shear region, leading to stronger E_r shear and the resultant spontaneous larger reduction of ion turbulent thermal diffusivity.

Discussion

- An increase of counter intrinsic rotation in the narrow region of the ITB located just inside of q_{min} is also observed in JT-60U reversed magnetic shear discharge with balanced momentum injection [Sakamoto, NF-2001]. -> Qualitative agreement!
- ✓ It can conclude that counter intrinsic rotation is a possible candidate to trigger the positive feedback loop via *E* × *B* mean flow, leading to spontaneous ITB formation.

Future plans

feedback loop.

✓ By reflecting bootstrap current and shafranov shift effects to the analytical magnetic equilibrium [Imadera, PFR-2020] in time, we can take them into account, which can help us to understand the overall positive

Fig. A typical 3D eigenfunction of toroidal ITG mode in a noncircular tokamak configuration with $\kappa_0 = 1.5$, $\delta_0 = 0.3$.