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1. Background: Possible Mechanism of ITB Formation 2. Motivation

3. Toroidal Full-f Gyrokinetic Code GKNET

5. ITB Formation in Flux-driven ITG/TEM Turbulence

By reflecting bootstrap current 
and shafranov shift effects to 
the analytical magnetic 
equilibrium [Imadera, PFR-2020] in 
time, we can take them into 
account, which can help us to 
understand the overall positive 
feedback loop.

4. Numerical Condition

 However, in our previous study based on the original GKNET with adiabatic electron,
enough large co-momentum injection is required for ITB formation in flux-driven ITG
turbulence. In addition, some experiments indicate the importance of counter-
intrinsic rotation. [Sakamoto, NF-2001]

 In this study, we have introduced hybrid kinetic electron model [Lanti, JP-2018] and
investigated spontaneous ITB formation in flux-driven ITG/TEM turbulence.

Purpose of this work

c

6. What is the Origin of Co-/Counter-Rotation?

Future plans

 Internal Transport barrier (ITB) has a crucial key to achieve a high-performance plasma
confinement.

 Some possible mechanism for ITB formation are proposed [Ida, PPCF-2018] as
(1) Positive feedback loop via 𝐸𝐸 × 𝐵𝐵 mean flow [Sakamoto, NF-2004] [Yu, NF-2016]

(2) Positive feedback loop via safety factor profile (BS current) [Eriksson, PRL-2002]

(3) Positive feedback loop via Shafranov shift + EM stabilization [Staebler, NF-2018]

 By our full-f gyrokinetic code GKNET, we found that momentum injection can change 
mean 𝐸𝐸 × 𝐵𝐵 flow through the radial force balance, which can break the ballooning 
symmetry of turbulence, leading to ITB formation. [Imadera, IAEA-2016]
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 GKNET-HE is based on full-f gyrokinetic model,
which trace turbulence and background profiles
self-consistently.

 External heat source and sink are introduced so
that the turbulence is not decayed but sustained
over the confinement time (flux-driven simulation).

 To study flux-driven ITG/TEM turbulence, we have
introduced the above hybrid kinetic electron
model [Lanti, JP-2018].

𝒥𝒥𝑠𝑠𝑠𝑠𝑠𝑠: Heat source operator
𝒥𝒥𝑠𝑠𝑠𝑠𝑠𝑠: Krook-type sink operator

Numerical model
We discretize the Vlasov equation by using

Morinishi scheme, which was developed for
fluid simulation and introduced to rectangular
gyrokinetic code, [Morinishi, JCP-2004, Idomura, JCP-2007]

to polar coordinate with new flux-conservative
scheme near singularity.

 Field equation is solved in real space (not k-
space) and full-order FLR effect is taken into
account by using 20 point average on gyro-ring.
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(A) ITG case (B) ITG/TEM case

We consider (A)ITG dominant and (B)ITG/TEM dominant cases.

 Safety factor profile is reversed, which local minimum is located at
𝑟𝑟 = 0.6𝑎𝑎0.

Only heat source is applied, which does not provide particle and
momentum.

 Stable local maximum of mean 𝐸𝐸𝑠𝑠 are formed near 𝑞𝑞𝑚𝑚𝑖𝑖𝑠𝑠 surface only in
kinetic electron cases.

 Large co-rotation is driven around 𝑞𝑞𝑚𝑚𝑖𝑖𝑠𝑠 surface in case (A-2) and (B).

According to the momentum transport theory, Π𝑅𝑅𝑅𝑅 𝜃𝜃𝜃𝜃 = 𝛼𝛼𝛼𝛼𝐸𝐸𝑠𝑠′ +
𝛽𝛽𝛼𝛼′ + 𝛾𝛾 𝑘𝑘𝜃𝜃𝑘𝑘𝜃𝜃𝜙𝜙𝑠𝑠2 𝜃𝜃𝜃𝜃

[Kwon, NF-2012], the first and second terms can

reduce momentum diffusion in this case, which can keep the stable
local maximum of mean 𝐸𝐸𝑠𝑠 through the radial force balance.

Counter-rotation is also observed in negative magnetic shear region
in case (B).
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 The finite ballooning angle of the global mode structure arising from
the profile shearing effect [Kishimoto, PPCF-1998] induces the residual
stress part of momentum flux [Camenen, NF-2011].

 The sign of the ballooning angle between ITG and TEM turbulence is
opposite so that the direction of intrinsic rotation is reversed.

 The steep electron temperature gradient is considered to destabilize
TEM in the negative magnetic shear region.
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 In flux-driven ITG turbulence with kinetic electrons, the co-current toroidal rotation
can balance with 𝐸𝐸𝑠𝑠, of which shear becomes strong just inside of 𝑞𝑞𝑚𝑚𝑖𝑖𝑠𝑠 surface.

On the other hand, in ITG/TEM turbulence with kinetic electrons, 𝐸𝐸𝑠𝑠 is reversed in
negative magnetic shear region, which makes its shear stronger and pressure
gradient steeper.

 As the result, ion turbulent thermal diffusivity in flux-driven
ITG/TEM case spontaneously decreases to the neoclassical
transport level among 0.4𝑎𝑎0 < 𝑟𝑟 < 0.6𝑎𝑎0 , where 𝐸𝐸𝑠𝑠 shear
becomes steep.

Decaying TEM turbulence in CBC case
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7. Summary & Future Plans

Summary
We have performed the flux-driven ITG/TEM simulation in reversed magnetic shear configuration by using hybrid kinetic electron model.

 In the presence of both ion and electron heating, a counter-intrinsic rotation by TEM turbulence is driven in negative magnetic shear region, leading to stronger 𝐸𝐸𝑠𝑠
shear and the resultant spontaneous larger reduction of ion turbulent thermal diffusivity.

Discussion
An increase of counter intrinsic rotation in the narrow region of the ITB located just inside of 𝑞𝑞𝑚𝑚𝑖𝑖𝑠𝑠 is also observed in JT-60U reversed magnetic shear discharge with

balanced momentum injection [Sakamoto, NF-2001]. -> Qualitative agreement!

 It can conclude that counter intrinsic rotation is a possible candidate to trigger the positive feedback loop via 𝐸𝐸 × 𝐵𝐵 mean flow, leading to spontaneous ITB formation.

Fig. A typical 3D eigenfunction
of toroidal ITG mode in a non-
circular tokamak configuration
with 𝜅𝜅0 = 1.5, 𝛿𝛿0 = 0.3.
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