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Background and our goal

* In order to realize high performance
burning plasmas it is necessary to
reduce both energetic alpha-particle
transport and bulk plasma transport
simultaneously.

* Drift-wave turbulence and MHD modes
driven by energetic-particles coexist in
burning plasmas, thereby the interaction
between them is expected to take place
and lead to new transport phenomena.

* We investigate nonlinear interactions
between the toroidal Alfven eigenmode
(TAE) driven by energetic particles and
electromagnetic drift-wave turbulence
by using the global gyrokinetic
simulation code GKENT.
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FIG. 1. Schematic drawing of multiscale interactions.
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GKNET code

* Full F gyrokinetic simulation code

* K.Imadera and Y. Kishimoto, IAEA-FEC, TH/P5-8, (2014)
* K. Obrejan, K. Imadera, J. Li and Y. Kishimoto, Plasma Fusion Res., (2015)

* The original version: the adiabatic electron response
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e &6f version is extended to include kinetic electron effects
e Z.Qin, K. Imadera, J.Q. Li, and Y. Kishimoto, Plasma Fusion Res., (2018).



Set up of simulations

We consider a normal magnetic shear plasma which has
energetic particle pressure gradient and bulk plasma pressure gradient.
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Linear stability
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* The plasma is unstable against a TAE at low toroidal
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mode number n=2, which has real frequency in the gap

of Alfven continuum indicated by yellow color.

 Drift-wave instability (kinetic ballooning mode: KBM) is
unstable at high toroidal mode number n >6.
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Outlook of nonlinear simulation
results

Only-DWT TAE+DWT

1. TAE+DWT
2. Only-DWT: without energetic particles
3. Only-TAE: limited to low n

The presence of the TAE instability significantly changes
the fluctuations of turbulence. i



Development of the mixture
of TAE and DWT
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* Drift-wave turbulence is establishe

modify turbulent fluctuations.
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TAE influences turbulent
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* The TAE suppresses the most unstable drift-wave mode but enhances a
smaller toroidal wavenumber mode, causing the inverse cascade.

* Due to the inverse-cascaded fluctuations the energy flux of bulk ions Qi in
TAE+DWT is enhanced at middle wavenumbers (4<n<10), and the peak of Qi in
TAE+DWT is shifted from n=12 to n=10 compared to Only DWT.

* The interaction slightly suppresses the particle flux of energetic ions I f at n 2
but enhances I'f by the inverse-cascaded fluctuations.



Process of the interaction
netween TAE and DWT
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* This interaction between TAE and the
drift-wave mode (n=12) enhances another
drift-wave mode through nonlinear mode
coupling after the growth of TAE.
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of DW of TAE smaller toroidal wavenumber modes.s




Suppression mechanism of the
most unstable drift-wave mode
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» Before the growth of the TAE, the drift-wave turbulence is poloidally localized
in the unfavorable curvature region.

* Then, after the development of the TAE, the turbulence spreads to the
favorable curvature region because of the global structure of the TAE,
suppressin]g the most unstable drift-wave mode through the geometrical
damping effect. 10



Transfer of turbulence energy by
the presence of macro-scale MHD
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* The drift-wave grows at the

outside of the torus at the
frame (a).

Then becomes turbulence
with the inverse cascade at
the frame (b)

The nonlinear mode coupling
of turbulence with the
macro-scale MHD instability,
by contrast, does not transfer
the energ?/ of turbulence to
neither a large-scale and
localized structure nor a
small scale and homogenized
structure but transfers the
energy to the homogenized
and large-scale structure at
the frame (c).
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Summary

* Global electromagnetic gyrokinetic simulations enable us
to investigate multi-scale nonlinear interactions between
electromagnetic turbulence and the toroidal Alfven
eigenmode, which is a macro-scale MHD instability driven
by energetic particles.

* As a result of the interactions, the TAE transfers the
energy of turbulence from high n modes to low n modes,
causing the inverse cascade.

* The inverse-cascaded fluctuations enhance both the bulk
ion energy transport and fast ion particle transport.

* Before the growth of the TAE, the drift-wave turbulence is
poloidally localized in the unfavorable curvature region.
Then, after the development of the TAE, the turbulence
spreads to the favorable curvature region, suppressing the
most unstable drift-wave mode through the geometrical
damping effect.
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