

L-H TRANSITION STUDIES AT JET: TRITIUM, HELIUM AND DEUTERIUM

Emilia R. Solano and JET L-H transition team*

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

*The JET L-H transition team

E.R. Solano¹, E. Delabie², G. Birkenmeier^{3,4}, C. Silva⁵, J. Hillesheim⁶, P. Vincenzi⁷, A.H. Nielsen⁸, J.J. Rasmussen⁸, A. Baciero¹, S. Aleiferis^{6,9}, I. Balboa⁶, A. Boboc⁶, C. Bourdelle¹⁰, I.S. Carvalho⁵, P. Carvalho⁵, M. Chernyshova¹¹, R. Coelho⁵, T. Craciunescu¹², R. Dumont¹⁰, E. de la Luna¹, J. Flanagan⁶, M. Fontana¹³, J.M. Fontdecaba¹, L. Frassinetti¹⁴, D. Gallart¹⁵, J. Garcia¹⁰, E. Giovannozzi¹⁶, C. Giroud⁶, W. Gromelski¹¹, R. Henriques⁵, L. Horvath⁶, I. Jepu¹², A. Kappatou⁴, D.L. Keeling⁶, D. King⁶, E. Kowalska-Strzęciwilk¹¹, M. Lennholm¹⁷, E.L erche¹⁸, E. Litherland-Smith⁶, V.Kiptily⁶, K. Kirov⁶, A. Loarte¹⁹, B. Lomanowski²⁰, C.F. Maggi⁶, M.J. Mantsinen²¹, A. Manzanares²², M. Maslov⁶, A.G. Meigs⁶, R.B. Morales⁶, D. Nina⁵, C. Noble⁶, V. Parail⁶, F. Parra Diaz²³, E. Pawelec²⁴, G. Pucella¹⁶, D. Réfy²⁵, E. Righi-Steele¹⁷, F.G. Rimini⁶, T.R obinson⁶, S. Saarelma⁶, M. Sertoli⁶, A. Shaw⁶, S. Silburn⁶, P. Sirén⁶, Z. Stancar²⁶, H. Sun⁶, G. Szepesi⁶, D. Taylor⁶, E. Tholerus¹⁴, S. Vartanian¹⁰, G. Verdoolaege²⁷, B. Viola¹⁶, H. Weisen¹³, T. Wilson⁶ and JET Contributors^{**}

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

¹Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain; ²Oak Ridge National Laboratory, Oak Ridge, United States of America; ³Physik-Department E28, Technische Universität München, Garching, Germany; ⁴Max-Planck-Institut für Plasmaphysik, Garching, Germany; ⁵Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal; ⁶CCFE, Culham Science Centre, Abingdon, United Kingdom of Great Britain and Northern Ireland; ⁷Consorzio RFX, Padova, Italy; ⁸Department of Physics, Technical University of Denmark, Kgs Lyngby, Denmark; ⁹NCSR 'Demokritos' 153 10, Agia Paraskevi Attikis, Greece; ¹⁰CEA, IRFM, Saint Paul Lez Durance, France; ¹¹Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland; ¹²The National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania; ¹³Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ¹⁴Fusion Plasma Physics, Stockholm, Sweden; ¹⁵Barcelona Supercomputing Center, Barcelona, Spain; ¹⁶Unità Tecnica Fusione, ENEA C. R. Frascati, Frascati (Roma), Italy; ¹⁷European Commission, B-1049 Brussels, Belgium; ¹⁸Laboratory for Plasma Physics Koninklijke Militaire School, Ecole Royale Militaire Renaissancelaan, Brussels, Belgium; ¹⁹ITER Organization, Saint Paul Lez Durance, France; ²⁰Aalto University, Aalto, Finland; ²¹ICREA and Barcelona Supercomputing Center, Barcelona, Spain; ²²Universidad Complutense de Madrid, Madrid, Spain; ²³Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom of Great Britain and Northern Ireland; ²⁴Institute of Physics, Opole University, Opole, Poland; ²⁵Wigner Research Centre for Physics, Budapest, Hungary; ²⁶Slovenian Fusion Association (SFA), Jozef Stefan Institute, Ljubljana, Slovenia; ²⁷Department of Applied Physics, UG (Ghent University), Ghent, Belgium

** See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

L-H transition studies in JET

- RF-heated Tritium plasmas: L-H power threshold, preliminary!
- Helium plasmas, comparison with Hydrogen, Deuterium:
 - L-H power threshold, n_{e,min}
 - ELMs in Helium
 - Transition modelling
- **Deuterium** plasmas:
 - Doppler reflectometry
 - Ion heat flux: modelling and n_{e,min}
 - Scaling laws for L-H power threshold

$$P_{loss} = P_{Ohm} + P_{Aux} - dW/dt$$
$$P_{sep} = P_{loss} - P_{rad,bulk}$$

Horizontal Target: HT

RF-heated Tritium plasmas: L-H power threshold, preliminary!
 From JET-C P_{LH} studies: expect P_{LH}(T)= 2/3 P_{LH}(D) [1]

[1] E Righi et al 1999 Nucl. Fusion 39 309

RF-heated Tritium in JET-ILW: dithering transitions

5

L-H transition experiments in Tritium with RF heating: difficult to enter good H-mode with ICRH

Clear L-H dithers observed:

- L-H transition, clear rise of \bar{n}_e
- Increase in P_{rad}
- H-L transitions

Eventually, at 0.77 n_{GW} , weak H-mode: $T_{e,ped} \sim 100-150 \text{ eV}$

H-minority RF heating n_T/n_{HDT}>94%, n_H/n_{HDT}<6%

G. Birkenmeier, to be submitted to NF.

L-H power threshold: **Deuterium/Tritium comparison**

- P_{sep} (T)<p'_{sep}(D) at high density, f_{GW}=0.77
- Dithers: power sufficient for L-H transition in Deuterium fails to produce steady H-mode in Tritium
- Ohmic and quasi-ohmic transient H-modes

- Radiation higher in RF heated Tritium: increased W influx
- P_{rad,bulk} already subtracted from P_{sep}: not the whole story?

G. Birkenmeier, to be submitted to NF.

L-H transition studies in JET

- RF-heated Tritium plasmas: L-H power threshold, preliminary!
- Helium plasmas, comparison with Hydrogen, Deuterium:
 - L-H power threshold, n_{e,min}
 - ELMs in Helium
 - Transition modelling

Horizontal Target: HT

7

P_{L-H} in Hydrogen, Deuterium, Helium: 1.8 T, 1.7 MA HT 🔘

• Clear shift in $\bar{n}_{e,min}$ towards higher densities for H and ⁴He

- Above $\bar{n}_{e,min}$ (He): P_{LH}(He)~P_{LH}(D) (not 40% higher) [2]
- Although $P_{rad}(He) > P_{rad}(H \text{ or } D)$, $\overline{n}_{e,min}$ shift not due to P_{rad}
- Increase in $\bar{n}_{e,min}$ (He) compensated by decrease in P_{LH}: unchanged ITER estimate, provided P_{rad}(He) is not very high in ITER

[2] D McDonald et al, PPCF 46 519 (2004)

Emilia R. Solano | IAEA FEC May 2021 | Nice, France (remote) Page

 $\bar{n}_{e,min}(D) = 0.4 f_{GW}$

 $\bar{n}_{e,min}(H) = 0.5 f_{GW}$

 $\bar{n}_{e,min}$ (He) = 0.6 f_{GW}

Helium Type I ELMs, 1.8 T, 1.2 MA HT

9

Emilia R. Solano | IAEA FEC May 2021 | Nice, France (remote) Page

Helium: HESEL modelling of L-H transition

Helium: transition at similar total power to **Deuterium**, but at ~ $2 \times \nabla T_i$, $n_i = n_e/2$ Collisional diffusion ~0.5× turbulent transport before L-H, unlike H, D, T Significant drop in interchange transport at L-H, below collisional diffusion

JET

L-H transition studies in JET

- Tritium plasmas: L-H power threshold, preliminary results
- Helium plasmas, comparison with Hydrogen, Deuterium:
 - L-H power threshold, n_{e,min}
 - ELMs in Helium
 - Transition modelling
- Deuterium plasmas:
 - Doppler reflectometry
 - Ion heat flux: modelling and n_{e,min}
 - Scaling laws for L-H power threshold

Horizontal Target: HT

Deuterium: Doppler reflectometry v₁~ E_r measurements

Evolution of $v_{\perp} \sim E_r/B$ measured with Doppler reflectometry along especially slow RF power steps (200 kW every 0.5 s)

Ohmic: low v_{\perp} at separatrix/SOL, deep well

During power ramp:

- high v_{\perp} at separatrix/SOL when ICRH on
- reduction in depth of v_{\perp} well with ICRH
- similar $V_{\perp maximum}$ shear during power ramp
- L-H: 200 ms after last v_{\perp} profile, 2.5 MW

It doesn't appear likely that E_r shear controls the transition.

C. Silva, to be submitted to NF.

JET

Deuterium: Edge ion heat flux Q_i

 $B_{tor} = 3 T$, $I_p = 2.5 MA$, NBI, n_e scan, measured T_i , T_e , n_e , P_{rad} profiles, JINTRAC+ASCOT¹ Linear Q_i trend below $\bar{n}_{e,min}$ reported for e-heated plasmas in C-mod and AUG¹ $P_{sep} = P_{loss} - P_{rad} = (P_{aux,i} + P_{ei} - dW_i/dt) + (P_{aux,e} - P_{ei} + P_{ohm} - dW_e/dt) - P_{rad}$ Edge ion heat flux, Q_i **Results from JET power balance analysis**² strong ion heating from NBI and P_{ei} 6 • dominant ion heat transport, confirmed [MW] 4 by QuaLiKiz gyrokinetic simulations • Core $T_p > T_i$, edge $T_p \approx T_i$ Non-linear Q_i vs n_e, like P_{loss} and P_{sep} * **P**_{loss} $\triangle \mathbf{P}_{sep}$ Non-linear Q_i similar to AUG NBI³ In this case n
{e.min} is not determined by P{ei} 2 2.5 4.5 5.5 3 3.5 5 n_{e,line} [10¹⁹ m⁻³] ¹P. Vincenzi et al., submitted to NF

²M. Schmidtmayr et al, 2018 Nucl. Fusion 58 056003 ³F Ryter et al, 2014 Nucl. Fusion 54 083003

Deuterium: P_{LH} Scaling Laws. ITPA TC-26

Emilia R. Solano | IAEA FEC May 2021 | Nice, France (remote) Page 14

Summary of L-H transition studies in JET

- RF heated Tritium plasmas: dithers indicated that P_{L-H}(T)>P_{L-H}(D) (preliminary results)
- Helium plasmas, comparison with Hydrogen, Deuterium:
 - Shifts in $n_{e,min}$: $\bar{n}_{e,min}$ (D)= 0.4 f_{GW} , $\bar{n}_{e,min}$ (H)= 0.5 f_{GW} , $\bar{n}_{e,min}$ (He) = 0.6 f_{GW}
 - Above n_{e,min}: P_{LH}(He)=P_{LH}(D)
 - Transition modelling: Z² collisional diffusion
 - Observed high frequency Type I ELMs in Helium
- **Deuterium** plasmas:
 - Doppler reflectometry: E_r shear doesn't evolve along power ramp
 - Ion heat flux is not a linear function of density below n_{e,min}
 - Scaling laws for L-H power threshold in JET-ILW
- **Outlook:** further L-H transition studies in **Tritium** and **DT** planned in 2021

UPDATED 05/05/2021

1.8 T, 1.7 MA, HT

RF dithers at medium n_e?

G. Birkenmeier, to be submitted to NF.

- W content increases with RF and time
- Not enough RF power available to compensate increase in P_{rad} (time, n_e)