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Main points/Highlights: New and unique measurements

shed light on inter-ELM thermal transport

« Clear evidence of inter-ELM ITG-scale and TEM-scale turbulence
with drive and damping mechanisms

 This measured multiscale turbulence is consistent with the inter-ELM
evolution of the observed estimated heat fluxes

 Modes are identified based on their theoretically expected
dependencies on background T;/T. and Vn,

Note: Although ETG and MTM modes are
thought/predicted to explain some of the Q,, in this
work ETG-scale n are not measured and the
identification of MTM like modes are not conclusive.
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Complete understanding of all fransport mechanisms is

necessary to improve prediction of pedestal evolution

« Pedestal can remain close to the Peeling-
Ballooning (P-B) stability boundary for a
significant amount of inter-ELM period

« EPED' model had many successes in predicting
saturated pedestal height and width
o KBM driven fransport constrains VP, ,,.; until
P-B modes excite an ELM

o Drift wave turbulence is shear suppressed

o In this work we will show clear evidence of Saarelma et al, PPCF (2013)
inter-ELM drift wave like turbulence that is
not completely shear suppressed

* Improved and validated models can impact
pedestal thermal flux predictions for ITER and
future fusion devices.

Diln-D 1Snyder et al, NF (2011)
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Experiments are performed in Lower Single Null shape H-

mode plasmas with low frequency type-l ELMs
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* Longer inter-ELM periods offer better

statistics for ELM synchronized analysis ~ 2°F ;

« Height and widths of n, T, and P 2
pedestal are estimated from tanh fits to 3f
Thomson measured profiles. '
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« Pedestal gradients are calculated from
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Electron Pedestal Gradients remain nearly saturated for

most of the inter-ELM period

* ELM synchronized analysis with ~42 inter-
ELM periods
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» Three distinct phases: Relaxation/crash,
recovery, and near saturation

- During gradient recovery: Height increases
and width decreases

« In gradient saturation phase: Both height
and width increase

« Gradients of pedestal density, temperature,
and pressure stay saturated for nearly 75%
of the inter-ELM period
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Main ion heat flux is close to neoclassical (NC) and eleciron

heat flux is anomalous in the nearly saturated phase
DIlI-D, this work

« Power balance estimated Q; is closer 0.008 o O OIR
to NC values calculated from T~
experimental gradients whereas Q. is 0.006- o~
anomalous (at v;~0.74) §0.004__ Qo (TRANSP) ]

« NC ion heat flux contribution to total = - — Qe (NEO)
ion heat flux changes at different radii 0.0021 i

- Decreasing v;, difference between :
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ITG and TEM-scale n in the pedestal are measured by

Doppler Backscattering (DBS) Diagnostics

170868

- Spatially, temporally, and wave number *DBS probe locations

resolved n amplitude and its lab frame
perpendicular velocity, v, are measured.
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« The 180° backscattered signal is Doppler
shifted w.r.t incident wave (fp = k;v, /2m,

U, = Vgxp + Uyp) and the intensity of the
received signal is proportional to n.
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« Local ExB velocity shear is calculated from
estimated vg.p at different probe radii
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* ITG-scale (kgp,~0.3) h is measured near
the foot of the pedestal whereas TEM-scale
(kgps~0.7-1.2) n is measured in the steep
gradient region of the pedestal.
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ITG-Scale n near pedestal foot increases right after ELM and

is subsequently suppressed until the next ELM

o DBS probe location
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 ITG scale n measured near foot of 0-150Lw

the pedestal increases just after ELM
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event 4
o Reduced progressively until next
ELM but not completely 3 ivertor Da intensity (a.u
suppressed 2500 2600 2700 2800 2900
o Has temporal correlation with Time (msec)

Divertor D, emission intensity
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Suppression of ITG-scale turbulence correlates with ExB

shear evolution and increase in pedestal Vn,
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Suppression of ITG-scale turbulence correlates with ExB

shear evolution and increase in pedestal Vn,
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 |TG-scale n evolution is consistent with Qi
evolution reported* from ASDEX-U

o Q; anomalous right after ELM and then

decreases and becomes close to NC 2;_ ExB shear(10°/s)
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TEM-scale npgs in the steep gradient region increases after a

time delay from the ELM onset
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« TEM-scale n propagating in electron diamagnetic direction (in the lab
frame) with kyp,~0.7-1.2 measured in the steep gradient region

 TEM-scale n increases after a time delay and the same delay has been
observed in all steep gradient localized probed locations.
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Steep gradient localized TEM n shows a critical VT, behavior

* In the steep gradient region, TEM scale 0
n increases by nearly 3-5 times when a ~ |
critical VT, is recached in the inter-ELM Ei“’% ]
period. VT .= VT, . itica™~ 130 €V/cm. 5004

« TEM turbulence can be driven by VT, §
but the threshold depends on 50-02_ :
background T;/T. and Vn, [Casati et al,
PoP (2008)] 0.00.
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TEM-scale n increases with VT, supported by presence of

increased background T;/T. and Vn,

At critical VT, TEM-scale n increases
supported by presence of increased
background T;/T, and Vn,

TEM-scale n is nearly saturated with
nearly saturated VT, and background
Ti/Te and Vn, in the presence of higher
ExB shear

This TEM-scale n has potential to drive
electron heat transport and may
contribute to the inferred anomalous
Q. in the saturated phase
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Identification of the observed modes are attempted
by varying VT, ,.4 and background T;/T. and

V1, peq- This is done by ECH at p~0.5.
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With ECH, T, ., increases and n, ., decreases whereas

P.,.q does not change much

« ECH at p~0.5 added to 1E

beam heated discharge

« Smaller and higher
frequency ELMs replace
larger low frequency ELMs

* How different gradients
change with electron
heating?
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With ECH, vn, ., decreases and VT, ., increases but

VP, ,.q Qttains the same level as pure NBI case

With additional ECH:

Lower pedestal Vn, and
higher VT,

Pedestal VT, is always
higher than pure NBI case.

Pedestal VP, increases
nearly to same level as no

ECH case before ELM crash.

T;/T. decreases by a factor
of 2 in the pedestal

How these above changes
affect ITG-scale and TEM-
scale n?
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At lower T;/T, and lower Vn_, TEM-scale n decreases and

ITG-scale n increases consistent with theoretical predictions

Time averaged
« ITG-scale nincreases ~50%

« TEM-scale n decreases ~66%

* TEM n stabilization with ECH
consistent with theoretical
predictions! of increased
VT, threshold for lower
T;/T. and lower Vn,

* ITG-scale nincrease is also
consistent with this theory!
which suggests a lower
VT; threshold
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Initial TGLF simulations in saturated phase suggest TEM-scale

fluctuations are unstable in the steep gradient region

2.0 DBS measurement range in kyp,-p
1.6 space in dashed rectangle
< 1.2

g:g Linear TGLF simulations shows in
2.0 the steep gradient region, the most
1.6 unstable modes
.1.2 * have similar kyp, of TEM-scale n
E 0.8 measured in experiment
) « propagating in electron
0.4 o diamagnetic drift direction in
0572 080 088 096 I plasma frame
Normalized radius, p and near pedestal foot an unstable
mode

« propagating in ion diamagnetic
drift direction at p~0.98

« with kgp,~0.2, close to the ITG-
scale h observed in experiment
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Summary

 New and uvniqgue measurements shed light on inter-ELM thermal
transport by drift wave like turbulence

« Evolution of ITG-scale turbulence regulated by ExB shear consistent
with Q; decreasing from being anomalous to closer to neoclassical

 TEM-scale n increases at critical VT, and can be responsible for
anomalous Q. inferred from experiments

 ITG and TEM-scale n evolutions are consistent with theoretical
predictions of these being ITG and TEM instabilities respectively

Dilli-D
ISION FACILITY

NATIONAL FU:

19



These observations can improve our pedestal evolution predictions by

explaining some of the inter-ELM Q. and Q;
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