

ROLE OF CORE RADIATION LOSSES FROM PLASMA AND ITS IMPACT ON ST REACTOR DESIGN PARAMETER

SHISHIR DESHPANDE^{1*}

CO-WORKERS

P. N. MAYA¹, A.K. TYAGI², U. PRASAD¹, P. CHAUDHURI¹ AND S. B. PADASALAGI²

¹INSTITUTE FOR PLASMA RESEARCH, BHAT, GANDHINAGAR, 382428, INDIA

² ITER-INDIA, INSTITUTE FOR PLASMA RESEARCH, GANDHINAGAR, 382428, INDIA

(*PRESENTER)

Track: Fusion Energy Technology | Session: TECH/2-5 DEMO & Advance Technology | Contribution ID 1261

12/MAY/21

1

CHOICES

PLAN OF PRESENTATION

- Introduction
- Equations/ definitions & Assumptions
- Results
- Summary & Future Work
- References

INTRODUCTION

- Spherical Tokamak (ST) represent an advancing front in fusion sciences today.
 - Attractive physics features
 - New developments (HTS, novel divertor designs)
 - Potentially lower costs
- Challenges
 - Extreme heat flux
 - Tight space on the inboard side for CP, OH, shielding
 - Replaceability and pulsed operations
 - And of course, getting the plasma parameters for a reactor

12/MAY/21

- This work is about parameter space, not about any specific configuration
- We expect ST to have intense plasma-wall interactions, causing generation of impurities. In addition, one could have externally injected impurities to control the transport power flux at the separatrix
- Furthermore, the ratio of fusion- α Larmor radius to minor radius will be significant (for compact devices) and so fraction of power deposited within the plasma can be small
- Consequently, the α-incidence can happen all over the first-wall, not just divertor, creating additional sources for impurities

Equations/ definitions & Assumptions

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

$$q = \frac{5RB_t S_k}{A^2 I_p}$$

$$\beta_N = \beta (aB_t)/I_p$$

$$W_\beta = 3 nT = \frac{3\pi}{8} \frac{\kappa S_k}{qA^3} R^3 B^2$$

$$P_h - P_r = P_L$$

$$P_L = W_\beta / \tau_E$$

$$Q_{LF} = P_L / P_f$$

28th IAEA Fusion Energy Conference | Nice

The shape-factor involves κ , δ and A(β is in %) Stored energy (calculated for given β) In steady-state, the heating is balanced by core-radiation and transport, with the transport power-loss estimated by a choice of confinement scaling. It is normalized w.r.t. fusion power 6 12/MAY/21

 $(1 - f_r) P_h / P_f = P_L / \overline{P_f}$ $f_r = P_r / P_h$ $\overline{P_h} = \underline{P_\alpha} + \underline{P_a}$ $P_{\alpha} = f_{\alpha} \left(\frac{P_f}{5}\right)$ $Q = P_f / P_a$ $Q = \frac{1}{\left(\frac{Q_{LF}}{1-f_{c}}\right) - \frac{f_{\alpha}}{5}}$

28th IAEA Fusion Energy Conference | Nice

Normalization by fusion-power Core-radiation: a fraction of heating-power Heating: sum of α -heating and auxiliary α -driven heating fraction (ideally 1)

definition of figure-of-merit

re-expressed in terms of normalized transp. power and core-radiation fraction

7

12/MAY/21

- To estimate the transport-power loss at the separatrix, several scaling laws have been used. ITER IPB(98,y2) is taken as a base reference for results. 11 scalings considered are:
 - 1) ITER IPB
 - 2) Buxton et al, Plasma Phys. Control. Fusion 61 035006 Eqn. 13
 - 3) Kaye et al, 2006 Plasma Phys. Control. Fusion 48 A429 Eqn. 1
 - 4) Petty et al Fus. Sci. Tech. Jan. 2003 Vol. 43 Eqn. 21
 - 5) Petty et al Phys. Plasmas 15, 080501, 2008 Eqn. 36
 - 6) Cordey et al., Nucl. Fusion 45 (2005) 1078–1084 Eqn. 9
 - 7) Cordey et al., Nucl. Fusion 45 (2005) 1078–1084 Eqn. 19
 - 8) Dnestrovskij et al NF 61 (2019) 055009 Eqn.7 (Globus)
 - 9) Dnestrovskij et al NF 61 (2019) 055009 Eqn.8 (MAST)
 - 10) Dnestrovskij et al NF 61 (2019) 055009 Eqn.9 (NSTX)
 - 11) Nearest integer ratios for ITER-IPB (analytic, this paper)

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

Caveat:

Since the scaling laws are obtained by regression analysis, it is strictly not possible to associate an analytic (continuous and differentiable function) for τ_{E} . So while doing the parameter scan, we associate the curves with a sense of being a guiding constraint, and accept solutions only when power-balance constraint is satisfied.

- Fusion power calculations:
 - Cross-section data from Bosch & Halle
 - Profiles of density and temperature are parabolic in r with an exponent given by S_n and S_T respectively (0.5 and 1.0 resp.)
 - Elongation is linearly interpolated on the magnetic surface
 - Fusion power is calculated from each annular toroidal shell and summed up
 - Helium driven fuel dilution effect is also taken into account
- Radiative power loss:
 - Average-Ion Model (D. Post et. al, At. Data and Nucl. Data Tables, 20(5) 1977) & Bremsstrahlung radiation

12/MAY/21

INPUT PARAMETERS USED BY THE PROGRAM

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

- *q* : MHD safety factor (incl. elongation and aspect ratio factor)
- β_N : Normalized toroidal beta
- κ , δ and A: the elongation, triangularity and aspect ratio
- f_r : fraction of the heating power, escaping as radiation
- f_{bs} : fraction of the current driven by bootstrap
- f_G : fraction of the Greenwald density limit
- f_{α} : fraction of the alpha power deposited in the plasma
- H_h : The H-enhancement factor
- M : the average mass, taken as 2.5 (D and T)
- S_n : 0.5 (parabolic density profile exponent)
- S_T : 1 (parabolic temperature profile exponent)
- fz_Fe, fz_Ne and fz_W: impurity concentrations for iron, neon and tungsten
 All the above 16 parameters are held constant in R-Bt space scan

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

Results

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

Contours of fusion gain and normalized power across separatrix

 κ =2.75, δ =0.5, A=1.8, β_N =3.3, f_r =0.54, f_G =0.8, Hh=1.2, f_{α} =1

An important delimiter: **QLF=0.2** if f_r =0 and full α heating, then this the ignition boundary

The resonance point (or large Q) will require smaller Q_{LF} values

Shrinkage of space if alpha-heating is 10% instead of 100%

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

15

Q =

Radiated fraction and normalized power across separatrix

 κ =2.75, δ =0.5, A=1.8, β_N =3.3, f_r =0.54, f_G =0.8, Hh=1.2

Tungsten concentration (n_W/ne) ~ 10⁻⁵

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

Contours of fusion gain and normalized power across separatrix

 κ =2.75, δ =0.5, A=1.8, β_N =3.3, f_r =0.54, f_G =0.8, Hh=1.2

Effect of He dilution is most visible for 900 MW case. Curve moves upwards

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

Neutron wall-load and Divertor Load

- Pdiv indicates the "divertor challenge parameter" (MW/m²).
- NW indicates the neutron wall load (MW/m²)

The divertor challenge parameter is not the actual divertor heat load, but a basis which spells out the actual design requirement. The number actually is Pdiv= Pseparatrix/(4*pi*R*a/5), suited for a double-null plasma.

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

THE ST CONFIGURATIONS BEING EXPLORED HAVE THE FOLLOWING CONSIDERATIONS

- A low-power, low-cost configuration has an advantage of demonstrating a potential (policy level decision) which can start a program towards larger devices
- If sufficient pulse length is feasible (depending on the flux stored in CS/ space available / HTS capability), then component-test facility can be foreseen, as also the novel breeding-blanket ideas (outboard-side)
- For a grid-level operation, multiple STs in tandem can be foreseen, with ESS (Energy Storage Systems) so that grid receives a steady supply.

Three configurations analyzed (using ITER IPB scaling)

	그 맛집에 걸려 가지 않는 것이 같이 가지 않는 것이 같아.		9 -
Parameters	R175	R125	R225
PFUSION (MW)	100	200	900
A	1.5	1.5	1.8
Карра	2.75	2.5	2.7
q	6	4.2	5.2
H _h	1.2	1	1.2
f _{bs}	0.5	0.1	0.5
β_N	2.9	1.8	3.3
I _p (MA)	19.7	25.2	21.4
Q	1.3	3.5	40
f _r	0.56	0.3	0.54
P _{sep} (MW)	38	43	90
AEA Fusion Energy Conference Nice 12/MAY/21 21			

28th

How various scaling laws affect the shape of QLF=0.2 curve

- 1) ITER IPB
- 2) BuxtonPPCF61
- 3) KayePPCF48
- 4) PettyFST43
- 5) PettyPP15
- 6) CordeyNF45
- 7) CordeyNF45Eq19
- 8) DnestrovskijNF61Eq7
- 9) DnestrovskijNF61Eq8
- 10) DnestrovskijNF61Eq9
- 11) Nearest integer ratios for ITER-IPB (this paper)

Allowed solutions zone, bounded in beta- q plane for various bootstrap fractions

SUMMARY

- Parameter space studies for ST based fusion reactor show a constraint arising from the radiative power loss from the core
- An important parameter characterizing the convergence for reasonable Q values is the ratio QLF (P_{sep}/P_{fusion})
- The uncertainties in confinement scaling (the exact exponent for the power) cause a large variation in QLF
- Reasonable Q seems possible only at high Ip

28th IAEA Fusion Energy Conference | Nice

- The auxiliary power requirement (due to poor alpha confinement) will adversely affect Q
- High values of f_r are needed for those cases where QLF is significantly less than $f_{\alpha}/5$

12/MAY/21

THANK YOU

STAY SAFE !

28th IAEA Fusion Energy Conference | Nice

12/MAY/21

