ID: TECH / 2-1 Progress in design and engineering issues on JA DEMO

Youji Someya¹, Yoshiteru Sakamoto¹, Ryoji Hiwatari¹, Yuuya Miyoshi¹, Satoshi Kakudate¹, Hiroyasu Utoh¹, Nobuyuki Asakura¹, Yuki Homma¹, Noriyoshi Nakajima², Kenji Tobita³ and the Joint Special Design Team for Fusion DEMO ¹National Institutes for Quantum and Radiological Science and Technology, ²National Institute for Fusion Science, ³Tohoku University someya.yoji@qst.go.jp

INTRODUCTION

The paper presents solutions for critical problems in Japan's DEMO (JA DEMO), which include common DEMO design issues beyond ITER-relevant technologies.

✓ The highlights of this design study are (1) Novel concept for water-cooled pebble bed blanket and tritium recovery, (2) System design for electric power generation with a management of the T concentration in the primary cooling system, (3) Identification of the classification for the rad-waste of JA DEMO, and (4)

2020 2015 2025 2030 2035 Construction Conceptual **Basic design** Engineering & operation design phase design phases phase 2nd review DFMO construction 1st review Table DEMO Parameter [Ref.1] **Objective of DEMO** Steady state 2hrs pulse

DEVELOPMENT OF DEMO DESIGN ACTIVITY IN JAPAN

- Identification of an accident sequences for safety guideline.
- ✓ The proposed concept as JA DEMO will be the foundation for Japan's DEMO that can be envisioned in the next stage of ITER.

CONCLUSION

In order to increase the feasibility of JA DEMO concept, studies on the following engineering issues were performed.

1. Countermeasure against a loss of coolant accident inside blanket (in-box LOCA)

- ✓ In the "honeycomb-shape", little retention of tritium was found by flow analysis of purge gas.
- ✓ Simple concept of cylindrical structure are designed to meet the target TBR in the condition of the pressure tightness.

2. An outlook of the steady and stable power generation beyond several 100 MW

- ✓ The total power consumption was found to be 386 MW, and the electric output was evaluated to be 254 MWe
- Consistency between cooling system and T concentration control was confirmed for safety management.

3. Rad-waste management

Even if uranium impurity in the beryllium as neutron multiplier was considered, all radwaste is classified as LLW and qualified for a shallow land burial.

4. Safety

- An accident sequences and mitigation systems are being sorted out. \checkmark
- A mitigation systems of the countermeasures were confirmed on the safety analysis

RECENT PROGRESS ON DESIGN ISSUES FOR JA DEMO

- 1. Countermeasure against a loss of coolant accident inside blanket (in-box LOCA)

✓ Steady and stable power generation beyond several 100 MW ✓ Reasonable availability leading to commercialization ✓ Overall tritium breeding to fulfil self-sufficiency of fuels

Design principle in the basic design phase

✓ Application of as reliable technology as possible

Pre-conceptual design of JA DEMO

Plasma operation

- Major radius, $R_p = \sim 8.5$ m Arrangement of large CS coil for a few hour pulse operation in the commissioning phase
- Plasma perform., β_N=3.4, HH=1.3
 Study-state operation
- Fusion power P_{fus} = 1.5
 Allowable divertor heat load (Div. des. based on ITER technol.)
- **Engineering technology** \rightarrow ITER technol. as much as possible
- T breeding blanket: JA TBM strategy
- Divertor: Water cooling, W mono block
- Magnet: Radial Plate struc. CIC conductor (Nb₃Sn)

$R_{p}(m) / a_{p}(m)$	8.5 / 2.4	
A	3.5	
К ₉₅	1.65	
q ₉₅	4.1	
I _P (MA)	12.3	
B _T (T)	5.94	
P _{fus}	\sim 1.5	\sim 1.0
Ave. NWL(MW/m ²)	1.0	0.7
Coolant water	290-325°C,15.5MPa	
Q	17.5	13
P _{ADD} (MW)	\sim 83.7	
n _e (10 ¹⁹ m ³)	6.6	
HH _{98y2}	1.31	1.13
β _N	3.4	2.6
f _{BS}	0.61	0.46
n _e /n _{GW}	1.2	

4. Safety

Previous safety study focus on the "bounding sequences"

A conceptual design of blanket with pressure tightness against in-box LOCA has been carried out for safety of the JA DEMO.

Issue_1: T extraction is confirmed by CFD analysis with "honeycomb-shape"

• Target of TBR (\geq 1.05) was achievable with a honeycomb-rib • For the achievement of TBR target, P.F. to 80% with B.P. is necessary. Issue: Amount of tritium retained in the breeding area may increase, due to the increase in pressure drop as a result of binary packing. > The flow of He-purge gas was analyzed to confirm tritium retention

Power generation systems is developed without inter. HEX.

2. Outlook of the steady and stable power generation beyond several 100 MW

 \succ T permeation through the SG to the secondary cooling system in the PHTS is found to be less than the restricted amount of T disposal for PWR in Japan [Ref.3].

Issue_2: Consistency between cooling system and T concentration control

Lessons learned from "bounding sequences"

- Even for extremely hypothetical accidents, environmental release of tritium will be within a dose for evacuation-free. [Ref.7]
- However, in-vessel LOCA due to a large scale break of cooling pipe could result in a failure of VV (primary confinement boundary).

Identification of an accident sequences and mitigation systems

Mechanisms and countermeasures against threats are sorted out.

Threats Loss of soundness of VV Mechanisms Overpressure in VV by coolant	Countermeasures → Confirmed by the analysis. Installation of Suppression tank
→ In-VV LOCA Overpressure in VV due to decay heat	Installation of safety limiter
→ After the in/ex-VV LOCA, LOOP	Installation of decay heat removal system
 Overpressure in VV due to H explosion Air intrusion after In-VV LOCA 	Installation of isolation valve, etc.
 External pressure load on VV LOCA in Cryostat 	Adoption of N multiplier of low H production reaction rate
→ Short-circuit in TF coils, etc.	Installation of guard pipes
Damage to VV due to flying objects, falling objects, etc.	Gap management between VV and TF coil
 Pipe whipping and jet during cooling pipe breaking Blanket module fall 	Double walling of vacuum vessels and arrangement of fine reinforced ribs

Confirmation of countermeasures by analysis

- ✓ Installation of suppression tank on the VV > Suppression tank is connected via the NBI port.
- > Max. pressure at VV could be reduced to 15%.

✓ Tank of volume (water): 5,600 m³ (2,800 m³) ✓ Rupture disk: 0.2 MPa (Differential pressure) \checkmark Cross section of the NB port: 4.2 m²

✓ A check valves are arranged to suppress

3 inflow points of He-purge gas are arranged near the FW Little retention of tritium in the area was found.

Issue_2: Simple concept of "cylindrical structure" is designed to meet the target TBR in the condition of the pressure tightness.

A simplified BB structure was proposed with a cylindrical structure. \rightarrow Characteristics of cylindrical concepts with Beryllide(Be₁₂Ti) block. \checkmark Be₁₂Ti has little swelling compared to Be. \Rightarrow Be₁₂Ti can be used as blocks. Using blocks with a higher thermal conductivity than pebbles eliminates cooling piping inside the module.

 \checkmark Allowable temp. of the materials is confirmed on the temp. distribution. \checkmark All materials were within the allowable temperature range. **First wall**

 \checkmark The design is embodied with keeping the highest percentage of TBR values (Li_2TiO_3 pebbles = 25%). Dents around the Be₁₂Ti block are designed to have the Li₂TiO₃ ratio of 25% ✓ Target of overall TBR (>1.05) is achievable.

Tritium impact in the primary coolant line

- ✓ T concentration at 1TBq/I was managed to apply the existing WDS for CANDU
- ✓ T permeation reduction factor is estimated to be 2077 from CANDU [Ref. 5]
- \checkmark T permeation through a SG to the turbine system evaluated at <u>318 Ci/y/loop</u>
- This value is less than restricted amount of T release for a PWR in JA [Ref.3]

3. Rad-waste management for JA DEMO

Disposal scenario

Temp. C

✓ Radioactive nuclide (RN) transport via likely pathways assessed based on JA regulation. > All radwaste is classified as LLW and qualified for a shallow land burial.

Issue: U impurities in Be as N multiplier

- ✓ Using neutron multiplier is essential
- to ensure sufficient TBR.
- ✓ Amount of beryllide ($Be_{12}Ti$) in DEMO is 500 t, which contain 6.8 kg of U. (\times U in Be:20 wppm)

Calculation results

Np, U, Pu, Am and Cm produced from uranium is less than 10¹⁰ Bq/ton of the total radioactive concentration for shallow land disposal along JA regulation.

The U content in Be needs to be less than approximately **0.85 wppm** in order that the total radioactive concentration of α nuclides

New purification process of QST has the ability to easily and stably remove U contained in Be until its content drops below allowable concentration (< 0.85 wppm) for shallow land disposal.
The concentration of U is removed to less than 0.1 ppm [Ref.6].

> Maximum pressure of VV is smaller than design pressure when the check valve arranges in the cooling system of the divertor baffle. \checkmark Break area of the div. baffle is assumed to the all of the cooling pipe.

 \succ Since the blanket has more amount of the water coolant than other IVCs, It can hardly contribute to suppress the max. pressure by check valve.

REFERENCES

[1] Y. Sakamoto et al., 27th IAEA Int. Conf. on Fusion Energy (2018) FIP/3-2

[2] Y. Someya et al., Fusion Eng. Des., 146 (2019), p. 894-897 [3] R. Hiwatari et al., Fusion Eng. Des. 143 (2019) 259-266 [4] K.Katayama et al., Fusion science tech.71(2017)261 [5] S. Tosti et al., Fusion Engin. Des. 43 (1998) 29–35 [6] J.H. Kim et al., J Nucl. Mater. 542 (2020) 152522 [7] Nakamura, et al., IEEE Trans. Plasma Sci. 44, 1689 (2016)

³ 10⁻² 0.1 1 10 10² 10³ Time after shutdown [year]