
1. Introduction
Edge localized modes (ELMs) are a concern for the ITER divertor life-time and
require mitigation or suppression. We summarize developments with JOREK towards
validated predictive simulation capabilities.
2. Methods and Code
Non-linear extended MHD code JOREK [1,2] + free boundary [3,4]
2D Bezier finite elements [5] + toroidal Fourier series
Grid aligned to flux surfaces + extension to first wall [6]
Robust fully implicit time steps to bridge temporal scale separations
 Iterative solver + physics based preconditioner (recently optimized [7])
Ext.: two-fluid [8], neutrals [9], impurities [10], pellets [11], kinetic particles [12,13]
Comprehensive code review [2]
3. Spontaneous ELMs
3a Type-I ELM cycles [14]

ASDEX Upgrade (AUG) H-mode case
Pedestal build-up via sources and ad-hoc diffusion profiles
Self-consistent ExB and diamagnetic flows + bootstrap current
Realistic resistivity and parallel heat conductivity
Plasma remains quiet for several ms due to flow stabilization
Precursor modes develop
Explosive crash as a result of self-amplifying processes:
1)Precursor affects ne and T asymmetrically => stabilizing terms (sheared plasma
flows) reduced more than destabilizing terms (pressure gradient, current density)
2)Precursor induced 3D perturbations locally increase the pressure gradient
destabilizing ballooning modes (comparable to Ref. [15])

Each crash expels ~7% of total plasma thermal energy within 0.5—1 ms
When reducing SOL density or decreasing heating power, ELM frequency drops
3b Small ELMs [16]



When reducing the heating power further, type-I ELMs are replaced by continuous
peeling-ballooning turbulence

Outer midplane pedestal pressure gradient locked to ~250 kPa/m
Strong similarities to small-ELM regime [17]
Outlook: configurations where experiments show better confinement like quasi-
continuous exhaust (QCE) regime [18]
3c Further results
Experiment comparisons of mode spectrum during ELM + q95 dependency [19-21]
Comparison of ELM induced cold-front penetration [22]
Tungsten transport in SOL/pedestal during ELM [23]
MAST-Upgrade ELMs including super-X divertor and burn-through [24]
Reduce/full MHD comparison: Excellent agreement for ELMs [25]

4. ELM triggering / pacing
4a Pellet injection during pedestal build-up [26,27]
Sharp transition between no-ELM response and ELM triggering

Resembles experimental “lag time” in metal walled machines
Losses of triggered ELM crashes are smaller than spontaneous ELMs, but triggered
ELMs have a smaller wetted area

 JET study reproduces experimental heat loads + finds toroidal asymmetry [28]
4b Magnetic kicks [29]
Alternative approach for pacing studied in an ITER plasma
ELM triggering occurs only during downward plasma motion
Confirms that modified edge current density destabilizes the plasma
Application in the ITER 7.5 MA/2.65 T operation seems possible
5. Resonant magnetic perturbations (RMPs)
AUG: transition at increasing amplitude ELM → mitigation → suppression [32];
mode coupling essential; locked modes in suppressed state.

KSTAR: RMPs show suppression due to increased energy exchange between
harmonics (non-linear coupling); density pump-out under-predicted

EAST: n=1 RMPs mitigate pedestal instability by one order of magnitude [36]
 ITER: Suppression beyond coil currents of 45 to 60kAt (within engineering limit of 90
kAt). Divertor footprints exhibit splitting.
5b New developments
Neoclassical toroidal viscosity (NTV) contributes to density pump-out [37]
Polarization drift
contributes to density
pump-out; good
agreement of JOREK
and TM1 in simple
geometry [39];
Shaping + toroidal
effects are investigated

Free boundary RMP
simulations [41] show
differences in the
penetrated state

6. Scrape-Off Layer (SOL), Divertor And Impurity modelling [42]
Fluid neutral model agrees well with SOLPS-ITER [43]
Realistic divertor conditions from a attached to almost completely detached divertor
Poloidal flows cause outer-inner target asymmetries in line with [44]
Kinetic neutrals + impurities => 3D simulations + state of the art SOL/divertor model
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Part of this work was carried out using the Marconi-Fusion
supercomputer.
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