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RMP is promising ELM suppression method [1]. 

• Linearly stabilized ELMs with degraded pedestal by RMP-induced islands [2] 

→ One of promising/successful explanation.

Additional concept may be needed for full explanation.

• Possible difficulty to solely describe degraded pedestal by islands.

→ Additional transport induced by RMPs.

• Limitations to explain ELM-like mode during suppression [3].

→ Contradiction to linearly stabilized ELM by Degraded pedestal.

Introduction – Additional mechanisms to fully explain suppression

n=2 RMP-driven pedestal degradation and ELM suppression

• Degradation by RMP response + NTV, explaining experiment to some extent. 

• Numerical reproduction of nonlinearly saturated ELM suppression.

- Reduced pedestal gradient & Mode coupling between RMP and ELM.

RMP-ELM coupling contributes to the ELM-crash suppression

• Further decreasing pedestal gradient.  → ELM driving source ↓

• Enhanced interactions between ELM harmonics. → Prevent mode crash

Favorable conditions for RMP-ELM coupling

• Overlap of RMP-induced islands near the pedestal top.

• Small rotation of ELM structure or 𝑉θ,E×B ≈ 0 at the pedestal.

CONCLUSION
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RMP-driven ELM crash suppression.

• Strongly suppressed mode amplitude [10-11].

• Disappeared bursty mode crash [12].

• Existing mode structure during suppression [13]. 

→ ELM is nonlinearly saturated rather than 
linearly stabilized, so filament can remain.

Contributors to suppressed ELM crash.

• Two major components in simulation.

• No crash suppression without mode coupling.

• ELM crash suppression by combined effects. 

RMP-ELM response – Nonlinearly saturated ELMs by RMP coupling

JOREK (3D Nonlinear MHD) [4].

• Realistic geometries with SOL.

• 5 fields reduced MHD equation.

PENTRC (NTV code) [5].

• NTV calculation based on the given plasma

equilibrium, profiles, and plasma displacements.

• Inclusion of NTV by JOREK-PENTRC coupling.

Simulation tool – Integrated nonlinear MHD simulation with NTV

w/ toroidal rotation
w/ ion diamagnetic
w/ 𝑇i = 𝑇e

JOREK PENTRC

RMP response

NTV particle fluxes

KSTAR discharge (#18594) with 𝑛 = 2 (𝜙 = 90°) RMPs.

• 𝐼𝑝 = 690 kA, 𝑞95~4, 𝛽𝑁~2. , ത𝑛e = 3.3 × 10^19 m−3.

• Stable ELM suppression entry by 𝐼RMP ≥ 3.5 kA.

• Simulation with x10 larger neoclassical resistivity due to numerical reasons.

• Two simulation steps for the analysis.

Reference plasma – RMP-induced ELM crash suppression in KSTAR 

RMP only simulation (n=0 and 2) RMP simulation with ELMs (n up to 14)

[1] T. Evans et al., PRL (2004) 235003
[2] Q. Hu et al., PRL (2020) 045001
[3] J. Lee et al., PRL (2016) 075001
[4] G. Huysmans et al., POP (2009) 124012
[5] N. Logan et al., POP (2013) 122507
[6] F. Orain et al., POP (2013) 102510

References

Kink-tearing response (KTM).

• Edge localized deformation of plasma (kink).

• Field penetration into the pedestal (tearing).

• Increased radial flux due to

NC toroidal viscosity (NTV).

• Edge localized NTV by displacement.

• NTV torque (𝜏NTV) and flux.

Net pedestal degradation.

• By KTM [6-8] and NTV [9].

→ Considerable effect of 
kink and NTV on pump-out.

RMP response – Kink-tearing + NTV induced pedestal degradation

- 𝒗𝐄×𝐁⊥ convection (Mainly 𝒏𝐞).
- Island and stochastic layer (𝒏𝐞 and 𝑻). [Poincare plot & 𝚪𝐄×𝐁⊥ profile]

𝚪𝐄×𝐁,⊥

[Displacement & NTV fluxes]

- net torque (90% of Exp.).
- 𝒏𝒆 pedestal (40% of Exp.).
- 𝑷 gradient (~ of Exp.)

ELM suppression entry where island 
overlap starts (S =1).

Overlap of magnetic islands near pedestal 
top can be important to RMP-ELM coupling 
and ELM suppression

[Nonlinear evolution of ELM]

- Degraded pedestal by RMPs
- Interactions between RMP and ELMs

[ELM amplitude comparison]

Enhanced ELM harmonic interactions.
•① Unlike ELMy, enhanced energy correlation 

among harmonics. [14]

•② Broadened mode spectrum.

• Prevented mode crash due to ① + ② [15].

• Nonlinearly saturated ELMs by

• Large RMP-ELM interaction is favorable!

Role of RMP-ELM coupling – Enhanced interactions between ELMs

Dominant 
ELMs

Degraded pedestal

(Driving ↓)

Broadened spectrum
Enhanced interaction

(Dissipation ↑)

Stationary mode overlap: Favorable 
to mode interaction.

Slow poloidal rotation of ELM structure can 
be advantageous for enhancing RMP-ELM 
interaction and ELM suppression

𝜹 is phase 
difference 
between 
RMP&ELM 

structures.

• Static RMP, 𝑉θ,RMP = 0

→ 𝑽𝛉,𝐄𝐋𝐌 ≈ 𝟎 for stationary 𝜹 or overlap.

No ELM suppression 
with large 𝑽𝛉,𝐄×𝐁 at 
pedestal top. 

• 𝑉θ,ELM ≈ 𝑉θ,E×B [16,17]. 

→ 𝑽𝛉,𝐄×𝐁 ≈ 𝟎 at pedestal is favorable [18].

ELM Supp. 
w/ island 
overlap.
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[Degraded density and gradient of pedestal]

10Max Planck Institute for Plasma Physics, Garching, Germany


