A Low Plasma Current (~ 8 MA) Approach for ITER’s Q=10 Goal

S. Ding¹,², A.M. Garofalo³, J. McClenagham³, G. Li², H. Wang³, L. Wang², B.A. Grierson⁴, C. Chrystal³, D. Eldon³, X. Gong², D.B. Weisberg³, J. Qian², C.T. Holcomb⁵ and J. Huang²

¹Oak Ridge Associated Universities, Oak Ridge, TN 37831, USA
²Institute of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei, Anhui, 230031, China
³General Atomics, P.O. Box 85608, San Diego, California, 92186-5608, USA
⁴Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
⁵Lawrence Livermore National Laboratory, Livermore, California, 94551, USA

dingsiye@fusion.gat.com
A Low Plasma Current Approach for ITER’s Q=10 Goal
is Proposed Using High β_p Scenario

Main results:

- Self-consistent 1D integrated modeling predicts Q=10 for ITER at $I_p \sim 7-9$ MA
- ITER’s 500 MW fusion power goal, with $Q > 10$, is predicted at $\beta_N > 3.1$
- DIII-D high β_p experiments support the physics basis of ITB formation predicted in the ITER simulations
Outline

Challenge of ITER baseline approach for $Q=10$ at high I_p and a possible low I_p solution using high β_p scenario

Modeling for high β_p version of ITER $Q=10$ scenario

DIII-D experiment supporting the physics basis of ITER high β_p scenario

Summary
ITER Baseline Scenario Faces Several Challenges due to High Plasma Current

• With increasing I_p
 – Challenge from ‘uncontrolled’ ELMs in ITER is expected to increase
 – Divertor heat load increases due to smaller heat flux width
 – Disruption risk increases

[Graph showing ELM energy fluence vs. plasma current (I_p)]

- Surface melting
- JET-ASDEX Upgrade-MAST scaling

Pitts, NME 2019
Eich, NME 2017
ITER Baseline Scenario Faces Several Challenges due to High Plasma Current

- With increasing I_p
 - Challenge from ‘uncontrolled’ ELMs in ITER is expected to increase
 - Divertor heat load increases due to smaller heat flux width
 - Disruption risk increases
- $Q=10$ at low I_p requires higher normalized confinement (H_{98}) at high β_N
- Very high H_{98} obtained in high β_P scenario independent of rotation in multiple tokamaks
 - JT-60U, DIII-D and EAST

Possible solution: Reduce plasma current

Sakamoto, NF 2009
Qian, APS 2019
Garofalo, PPCF, 2018
Pitts, NME 2019
Eich, NME 2017
Challenge of ITER baseline approach for $Q=10$ at high I_p and a possible low I_p solution using high β_p scenario

Modeling for high β_p version of ITER $Q=10$ scenario

DIII-D experiment that supports the physics basis of ITER high β_p scenario

Summary
ITER Q=10 is Predicted by Reducing Auxiliary Power at Low Plasma Current

- 0D modeling provides insight into the possible path towards ITER Q=10 using high β_p scenario
- $Q=\frac{P_{\text{fus}}}{P_{\text{aux}}}$
 - P_{fus} decreases slower than P_{aux} does
- $P_{\text{fus}} \sim 500$ predicted at $I_p \sim 8.5-9$ MA

Start point: ITER high β_p Q=5 1D sim.

McClenaghan, NF 2020
ITER Q=10 is Predicted by Reducing Auxiliary Power at Low Plasma Current

- 0D modeling provides insight into the possible path towards ITER Q=10 using high β_p scenario
- Q=Fusion Power/Auxiliary Power
 - P_{fus} decreases slower than P_{aux} does
- $P_{\text{fus}} \sim 500$ predicted at $I_p \sim 8.5-9$ MA
- Key requirements for ITER high β_p Q=10 scenario:
 - $\beta_N \sim 2.8-3.5 @ q_{95} \sim 6-7$
 - $f_{Gw} \sim 1.2-1.3$
 - $H_{98} > 1.5$

Start point: ITER high β_p Q=5 1D sim.

McClenaghan, NF 2020
OMFIT Provides Capability of Self-Consistent Prediction of Tokamak Stability Transport Equilibrium and Pedestal (STEP)

- Workflow ‘STEP’ in OMFIT
 - Core profile prediction
 - Heating source, current profile calculation
 - Equilibrium reconstruction
STEP Module has been Successfully Validated on Reproducing DIII-D and EAST Experimental Data

DIII-D # 81499 @ 3.8 s

- $n_e [10^{19} \text{m}^{-3}]$
- $T_e [\text{keV}]$
- $T_i [\text{keV}]$

EAST # 81481 @ 5.3 s

- High β_p
- Exp.
- STEP

Lower single null
Low q_{95}
Standard H-mode

Slendebroek, to be submitted to PoP
McClenaghan, this conference, poster, May 14, 2021
Wu, NF 2019
1D Integrated Simulations Aimed for ITER Q=10
High β_p Solution are Performed Using Iterative Loop

- Using ITER heating and current drive power:
 - Neutral beams ≤ 33 MW
 - Electron cyclotron ≤ 20 MW

- Temperature, density and current profiles evolved self-consistently
 - Impurity densities are not evolved
 - Rotation set to zero

- β_N feedback control (5% error) + f_{Oh} feedback control (2% error)
 - Aim at low Ohmic current fraction

Will lower P_{aux} give higher Q as 0D predicted?

McClenaghan, NF 2020
Summary of Major Parameters for ITER High β_p Q=10 Base Case

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base Case</th>
<th>Q=10 Predicted at $I_p \sim 7.5$ MA</th>
<th>Medium q_{95}, high f_{GW}, high β</th>
<th>High Confinement, fully non-inductive operation</th>
<th>Relatively low fusion power, triple product</th>
</tr>
</thead>
</table>

I_p (MA)	7.5\pm0.15	7.74\pm0.18	8.6\pm0.35	1.46\pm0.06	2.48\pm0.04	98.9\pm0.8
q_{95}						
n_e (1019 m$^{-3}$)						
f_{GW}						
Z_{eff}						
f_{NI} (%)						

β_N	2.81\pm0.06					
β_p	2.27\pm0.04					
H_{98y2}	1.75\pm0.04					
P_{fus} (MW)	294\pm27					
Q	10.3\pm2.5					
G_{98}	0.082\pm0.005					

| $n_iT_i\tau_E$ (1021 m$^{-3}$ keV s) | 3.34\pm0.22 | 4.91 | Note the high Z_{eff} for realistic impurity seeding divertor solution

Note: The prediction of $Q=10$ at $I_p \sim 7.5$ MA is based on medium q_{95}, high f_{GW}, and high β. This condition is achieved through high confinement, fully non-inductive operation, with relatively low fusion power, resulting in a triple product.
The Presence of Large Radius ITB Elevates Core Profile at Low Plasma Current

- Prescribed pedestal
 - $n_{e,ped}$: 93% n_{GW}
 - P_{ped}: ~78% EPED prediction

- ITB foot @ $\rho=0.8$
 - All n, T channel

- Negative Off-Axis magnetic Shear at large radius (NOAS)
 - Not NCS

- $q_{min}>2.5$

- $\beta_N \sim l_i \times 6$
 - Above $n=1$ no wall limit
 - Well below $n=1$ ideal wall limit
Lower Z_{eff} will Enhance Q by Increasing α Heating and Reducing Auxiliary Heating at Similar Confinement

- $Q \sim 10$ at $Z_{\text{eff}} \sim 2.5$
- The key of achieving high Q at similar P_{total} is to replace a part of P_{aux} by P_{α}
- Lower Z_{eff} enables higher main (fusion) ion densities and higher fusion power
- Impurity species: He (thermal), Ne
Increase β_N is An Effective Approach to Enhance Fusion Power

- $\beta_N \sim 2.8$ at $Z_{\text{eff}} \sim 2.5$ gives $P_{\text{fus}} \sim 300\text{ MW}$
- With increasing β_N:
 - Fusion power increases
 - Fusion gain increases
 - Plasma current increase; $f_{\text{Oh}} \sim 0$
- Most of cases well below P_{aux} limit (53 MW)
 - Above L-H threshold power (77 MW)
- ITER 500 MW fusion power requires $\beta_N \sim 3.1 - 3.4$
 - $I_P \leq 9\text{ MA}$
- Triple product at baseline level
Recent DIII-D Experiments Address Challenges for ITER High β_p, Q=10 Scenario

Most challenging parameters in exp.
Recent DIII-D Experiments Address Challenges for ITER High β_p Q=10 Scenario

- Previous experiments achieved $H_{98} \geq 1.5$ with $f_{Gw} \sim 1.0$
- At similar q_{95} and β_N, two combinations of high density ($> n_{Gw}$) and high confinement ($H_{98y2} > 1$) parameters are achieved simultaneously
Outline

Challenge of ITER baseline approach for $Q=10$ at high I_p and a possible low I_p solution using high β_p scenario

Modeling for high β_p version of ITER $Q=10$ scenario

DIII-D experiment that supports the physics basis of ITER high β_p scenario

Summary
Developing Density ITB is An Effective Approach to Achieve Line-avg Density Above Greenwald Limit

- $n_{e,\text{ped}}$ is kept below Greenwald limit using pedestal density feedback control
 - $f_{Gw,\text{ped}} < 0.7$
- Neon injection triggers large radius density ITB
- ITB sustains when neon injection is turned off
- Achieve reactor-level absolute density and f_{Gw} up to 1.4
Experiments Demonstrate the Compatibility of High Confinement Core and Reactor Level Density with f_{GW} Up to 1.4 at $q_{95} \sim 8$

- Stationary phase for $f_{\text{GW}}>1.0$ for 1-2 sec
 - $f_{\text{GW}} \sim 1.3$ is up to $8\times \tau_E$
 - $f_{\text{GW}} > 1.0$ is up to $21\times \tau_E$

- Line-avg density $\geq 7.6\times10^{19}$ m$^{-3}$, ITER-level density
 - Support the modeling

- H_{98} up to 1.4, β_N up to 3.5
Demonstration of the Feasibility of Developing Large Radius ITB in Future Reactor Condition

- DIII-D experiment confirms the density ITB in ITER modeling is achievable at similar q_{95}
 - Same absolute value in the core
 - Similar shape with large radius ITB

- Electron temperature profile in experiment also has similar shape with ITB compared to ITER simulation
 - Much lower value due to different I_p, B_T, power, etc.
 - Different collisionality does not seem to affect ITB formation
Challenge of ITER baseline approach for Q=10 at high I_p and a possible low I_p solution using high β_p scenario

Modeling for high β_p version of ITER Q=10 scenario

DIII-D experiment that supports the physics basis of ITER high β_p scenario

Summary
Summary

- A low plasma current approach for ITER’s Q=10 goal is proposed using high β_p scenario
- Self-consistent 1D integrated modeling predicts Q=10 for ITER at $I_p \sim 7-9$ MA
- ITER’s 500 MW fusion power goal, with $Q > 10$, is predicted at $\beta_N > 3.1$
- DIII-D high β_p experiments support the physics basis of ITB formation predicted in the ITER simulations

Merits of ITER high β_p scenario:
- Low disruption risk
- Low transient heat load
- High confinement at low rotation
- Low inductive current fraction
- High q_{min}, no ST, 2/1, etc.
- Excellent core compatibility with divertor detachment

L. Wang, et al., this conference, Oral talk, Friday, May 14, 2021
Thank you!