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OUTLINE

Scenario development toward high beta steady-state operation
Improved scenario control and extended operation windows at KSTAR
Further development for advanced scenario (High q,,,,, Hybrid, high-Ti)

3D field physics
Optimal configuration of Resonant magnetic perturbation (RMP) ELM suppression
Validation of the plasma response and adaptive ELM control

Fundamental turbulence and transport
Interaction of MHD & turbulence in transport
Turbulence spreading around magnetic island and avalanche-like transport
Effect of 3D field on transport and MHD

Disruption mitigation
Diagnostics for the Shattered Pellet Injection
Experiments on multiple SPIs
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KSTAR is to address key physics and technical issues for ITER and DEMO

KSTAR superconducting fusion
device

High frecl:uency heating device
& microwave)

Parameters
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Overall performances in various operating scenarios

High Ip plasma operation
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Improved Access to High q,,, (®>2) for High B, Steady-State

Scenario

= Access to high g,
» Early shaping

« Early Heating & H-mode
transition

= Slow By ramp during
target formation

* Minimize injection power
and avoid MHD

« Maintain high q,,,;,

= Strong dependency of
confinement on g,

* Improved confinement
for broader current profile

KSTAR
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High li Scenario Achieves Bn = 3, Vioop < 0 at g9s = 5 but Transiently

n=2 onset
25686 25693 25691 — J,

= High performance, low q,,,=1 scenario

* Ohmic target formation and rapid 3, ramp
at the highest li

 Efficient on-axis CD (central ECCD + NB)
* Maintain stability at high B, w/o wall

lp=500kA | =

stabilization :

. . 0.0E.

= Robust shape control during rapid B 1.4
ramp achieved 13

- Feed-forward shape control of X-point 12
target 11

1.0 E

+ Eliminate long ELM period between H-
mode transition and first ELM: Preheating + °° = Ay FRRL
gas puff 08 & .
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« Confinement and mode onset t|n&g’)ﬁ§1]§|l)D(t}k;’ J. M. Park, ORNL

sensitive to Ip (or ggs)
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Transition to Hybrid mode by magnetic balance control
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Long pulse sustainment(~30s) of Hybrid scenario

R [m]

= #25530
- Flattop sustained for ~30 s
- 1p=0.6 MA, P,yiy = 5.04 MW
Vioop = 0.06-0.07 V, |, ~1.02
- Teconstant,neand Ti \, |, /~

SEQUL

NATIONAL
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» The performance was gradually degraded with gy = 2.6 - 2.25,
mainly due to density and ion temperature drop.
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Recent high Ti discharge in diverted L-mode edge

= Recently, KSTAR achieved stable diverted high T, KSTAR #25860 (2020/10/16), Bt=1.8T
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RMP-driven, ELM suppressions in KSTAR show a rather

scattered dependence of pedestal density and collisionality

Empirically, low n, and v* plasmas are preferred for RMP-driven, ELM-crash-
suppression
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[V.w. Kim et al, to appear in Phys. Plasmas (2020)]
Nonetheless, no tendency is observed for RMP-driven, ELM-crash-suppression
, according to the latest database in recent years (NOTE high n_,and v* ELM su
ppression in KSTAR )
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As RMP amplitude increases, the gos window of n=1 RMP-driven,

ELM suppression is expanded, consistent with theory

Once a large amplitude of RMP is utilized (without mode-locking), a wider ra
nge of qq; has been seen with RMP-driven, ELM-crash-suppression
[Y.M. Jeon, to be published (2020)]

-Predicted by TM1 [0. Hu (PPPL)] &) ) PPPU -
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High density plasma was successfully detached without impurity

seeding, and has been sustained at modest level of RMP
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Modest levels of RMP 25184 High levels of RMP 25135
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Time [s]
[Y.In, H.H. Lee, J.H. Hwang et al, to be published (2020)]

However, at high level of RMP, the plasma gets re-attached,
along with noticeable density pump-out .

As expected [Frerichs et al, PRL (2020)], substantial  Y.In, UNIST
reduction of the divertor heat fluxes have been measured in
detached plasmas, even resulting in very low level of

signal-to-noise ratio on IR camera KAIST




Nonlinear RMP response contributes to the pedestal

degradation and increased heat flux during RMP ELM control

* Nonlinear 3D MHD modeling on KSTAR shows that RMP drives kink-tearing response,
influencing the pedestal transport and divertor heat flux. 6 PP e
— Degraded pedestal leads to increased background heat flux =
« Plasmaresponse can be changed by the MHD mode coupling with ELM.
— Enhanced stochastic layer and pedestal transport by RMP-ELM coupling
— Importance of mode coupling to fully describe the RMP-driven plasma response

JOREK, KSTAR #18594 n=2

: : JOREK, KSTAR #18594 n=2 JOREK, Divertor heat flux
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RMP-driven ELM suppression is successfully reproduced with

RMP+ELM+NTYV integrated simulation

* Integrated MHD modeling shows that RMP (n=1,2) can suppress ELM crashes™

Wkin [ﬂ.'ll.]

KSTAR

Full suppression of ELM burst
Significant reduction of bursty heat flux (But, 2 times larger background heat flux)
* NOTE that ELM crash suppression by RMP is the consequence of RMP response

Degraded pedestal gradient (Reduced instability source)

PRINCETON
PPPL asiiPivsics
LABORATORY

RMP-ELM mode coupling (Reduced bursty behavior ELM in nonlinear phase).

JOREK, ELM-crash suppression

(n=1 #21072, n=2 #18594)
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Adaptive ELM control successfully optimizes the RMP level, maximizing

the confinement recovery while maintaining ELM suppression

 ELM suppression with adaptive ELM control

v Successful ELM suppression and confinement optimization by adaptive control.
v Recovered confinement up to 60% (Hqg = 0.7 — 0.9).

v" Mainly due to stably/quickly converged RMP level.

v' Converged within 4 iterations, ~5 s.

KSTAR #26004

1.2

1.0
0.9 €& 60% confinement recovery

0.7

€——— Fast convergence of RMP level

£&———— Sustained suppression

[Overview of discharge #26004] Time |s]

Decreasing the RMP amplitude until the loss of ELM-crash-suppres
sion (2.5 kA down to 1.7 kA), and then reversing the the RMP chang
e for ELM-crash-suppression

[R. Shousha and S.K. Kim, to be published (2020)]
KSTAR D) PPPL - @



Evidence of up/down asymmetric coupling difference for RMP ELM

suppression, showing a meritorious use of Mid/Bot, instead of Top/Mid

23859

3 /|RMP[kA] BOT (i)]

MID 1

h \]t \tf—\\‘\\‘(ii)_

5 * ERNARAN
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10

2%10? 2"‘°:: D,lavl  ELM-crash-suppressed )
1x10 1o N I
4 6 8 10 " 6 8 10

Time [s] Time [s]

* Potentially critical information for ITER RMP operation
*  Much more reduced level of Bottom row was found to be sufficient, suggesting a weak coupling
of top-row in 3-row IMCs
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Machine Learning (ML)-based RMP ELM control can successfully

suppress first ELM right after L-H transition

* Real-time ML algorithm was shown to be working properly: classification + applying RMP
*  First ELM was successfully suppressed by applying RMP during ELM-free period right after the L-H transition
*  ML-based method has positive effects on sustaining high-beta plasmas during the whole discharge period
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KSTAR is successfully testing a comprehensive error

field correction scheme using a concept of QSMP

Quasi-symmetric magnetic perturbation (QSMP) in a tokamak: A 3D field that can induce minimum
neoclassical 3D transport, compared to NRMP or RMP, as successfully tested in KSTAR and DIII-D

Implies: Error field can be modified towards QSMP in correction, to minimize both resonant or non-
resonant effects — more comprehensive or alternative scheme in error field correction problems in

tokamaks

NTV prediction

KSTAR QSMP configuration, with for QSMP, NRMP, RMP

large dB but minimum impact o

n 3D transport N g
P 0.10- o &
N Few
ll; 'It resonance
i |
RMP! | |
0.05 Iy ‘
o A
I Iy
[ I
,' 1 "\Non—resonancej'lll
NRMP [ . \ I
i e R I
Vo
0.00-

[1] J.-K. Park et al., PRL under review (2020)

PRINCETON
PLASMA PHYSICS
> LABORATORY

R

KSTAR

Experimental comparisons

(a) 3D field amp. [kA] and phs. [rad]
EAmp. | TOP

6 1 I 3
3F MID E
Rtd W BN B
5o —— :
.g: S 3

(b) Density [10' m™] and Temperature [keV]
4.0f No effect

No effect Density pumping

Te degradation

c 3.0
2.5E
(c) Toroidal rotation [krad/s]
80 No effect Rotation Rotation
70 damping damping
60 &
50
(d) D, [a.u.]

NRMP 8
Time [s]

J. —K Park, PPPL




High-k scattering diagnostics provides key insight on

relation between turbulence and MHD stability

= Transition of coherent mode to QCM = High-k density fluctuations are

W. Lee, accepted in NF

& ibid (MF1-011) now routinely measured by CSS

Shot #15906 (B=2.1T) 3] ©” t © - - - .
1of @ ) ™ Ecn‘pz " 3 ' Pa ] . (e) MIR - RF1-Ch8 C‘M, acm % ;o d Iag nOStICS W. Lee, submitted to PPCF
% | [y 3 R TR : B
00 Pl | L o . : ¢ |.. Turbulence suppression  Turbulence increase
3 T T T T T : : & ey . .
L ; i 0 ok gy after LH transition with reduced ELM size
sk Te t ; ; waing
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e
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Gradual increase of
turbulence before
ELM crashes
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Collisional wavenumber broadening of coherent mode
iIs a mechanism of the quasi-coherent spectrum

KSTAR e



Nonlinear energy transfer provides key insight on relation

between turbulence and MHD stability

= Nonlinear three-wave coupling and energy transfer from ELM to
broadband density turbulence during the ELM crash event 3 «im nFeo,

124002 (2020)

Analysis of quadratic energy transfer
0.00 005 010 015 020 00 01 02 03 rate [RitZ PFB 1989, de Wit JGRA 1999]

| | i i
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Turbulence spreading around magnetic island :

Rapid heat transport and reconnection inside island

= Complex effects of the Te turbulence on the magnetic island evolution

M. Choi, submitted to Nature Comm.
Spontaneous Te peaking inside the island due

to the turbulence spreading has a stabilizing Turbulence enhancement at the reconnection
effect site (X-point of the island) leads to the further
Outside of island (r < 7;) Inside of island reconnection and field stochastization, i.e.
T T 028 { 1! 11 ! minor disruption.
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ExB shear regulates Avalanche-like transport in L-mode (1)

= Avalanche-like heat transport events and their regulation by ExB shear
flow layers in MHD quiescent KSTAR L-mode plasmas

M.J. Choi, NF 59

086027 (2019) & ibid (F-143)

Large events

Te profile I Y S S
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When shear layers exist, the size of the avalanche-like events is limited in the mesoscale (~45p;).
Large events occur after the shear layers are destroyed.
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ExB shear regulates Avalanche-like transport in L-mode (2)

= Gyrokinetic simulation of KSTAR L-mode plasmas reproduces electron
heat avalanches and zonal ExB shear flow layers | o susmited o nr

Similar power-law spectra of

avalanche Te perturbations Quantitative agreement of the width

2. ~0.7 of the profile corrugation
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3D field effect on transport and Alfven Eigenmodes

= TAEs are destabilized by 3D

= 3D magnetic breaking improved magnetic breaking K. Kim, NF 60,

energy confinement e i e = 126012 (2020)
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KSTAR dual SPI experiments demonstrated the feasibility of

simultaneous multiple injection planned in ITER

» Two identical SPIs were installed in toroidally o%posite KSTAR shots: [02343€', 023476, 1023473 10234641
INolgaRtllons in KSTAR in collaboration among 10, ORNL, and quench rate is proportional — eseb
) o to the delay between two SPIs — 23a731p
* Low Z (D,), high Z (Ne, Ar), and their mixture can be 08 23464 Ip
injected selectively.
* Three barrels in each SPI control the pellet size (i.e.,
amount of particles): 4.5 mm + 2x7.0 mm 5
£ . .
#23456: Atq,n~ (i.€., single SP

. rI%%TAR volume: 1.8 x T x (0.45)2x2xmx3.14x1.8~12.9 ol #23476: Atﬂash""o-68 ms

+ 4.5 mm: D# =2.18x102!, Ne# =3.83x102., Ar# =5.37x10% #23473: Atyas,~0.37 ms

. 7.0 mm: D# =8.77x102%, Ne# =1.54x1022, Ar# =2.16x1022 #23464: At;,5n,~0.05 ms Fast quench

0.004

* 8.5 mm: D# =1.60x1022, Ne# =2.82x10%2, Ar# =3.96x1022 —0-004 -0.002 o000 0.002
- —— n=1 mode amplitude

23456
23476
. 23473
[ 2y 23464

#23456! Atg,e~ (i.e., single SPI)
#23476[ Atg,e,~0.68 ms
#23473! Aty,,~0.37 ms
#23464[ Atg,.,~0.05 ms
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SUMMARY

« Enhanced performance in various operating regimes was obtained and machine
parameters were expanded, including early diverting, sustainment of the centrally
peaked high ion temperature mode, hybrid scenario, stationary high beta discharge and
long-pulse H-modes

» Key issues for RMP ELM suppression has been further resolved focusing on the optimal
poloidal spectrum, collisionality, and the real-time control capability for minimum
performance degradation

« Cross-validation between the advanced diagnostics and the modeling provides new
insight on the fundamental transport process including avalanche-like electron heat
transport and QCM

* Providing uniqgue demonstration on the performance of symmetric multiple Shattered
Pellet Injections (SPIs) which is the main strategy of ITER for disruption mitigation
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