

Overview of the TCV Tokamak Experimental Programme

Holger Reimerdes for the TCV team 28th IAEA Fusion Energy Conference, May 10-15, 2021

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Tokamak à Configuration Variable (TCV) (2) ²

Mid-size tokamak $R_0 = 0.9 m$ $B_0 \leq 1.5 \mathrm{T}$ A = 4

EPFL

New device capabilities

- New removable divertor baffles
- Numerous new or improved diagnostics
- NBI heating
 - Improved acceleration grid allows $P_{\text{NBI}} \leq 1.3$ MW
- EC heating
 - X2 (83GHz): 2x700kW
 - X3 (118GHz): 2x450kW
 - New dual frequency gyrotrons (84/126GHz): 2x1MW

EPFL

New device capabilities

Fasoli, et al., NF (2020)

- New removable divertor baffles
- Numerous new or improved diagnostics
- NBI heating
 - Improved acceleration grid allows $P_{\text{NBI}} \leq 1.3$ MW
- EC heating
 - X2 (83GHz): 2x700kW
 - X3 (118GHz): 2x450kW
 - New dual frequency gyrotrons (84/126GHz): 2x1MW

EPFL

EPFL TCV programme addresses ITER and DEMO needs

5

EPFL TCV programme addresses ITER and DEMO needs

EPFL Baffles increase divertor neutral pressure by up to a factor of 5

Reimerdes, et al., NF (2021)

7

Increase divertor dissipation – access to regimes of greater interest for next step devices

EPFL Baffled divertor is colder and denser and detaches at a lower core density

Février, et al., NME (2021)

EPFL "Super-X effect" partially recovered in baffled divertor

C. Theiler, et al., P4 \rightarrow We, 14h & EX/7 \rightarrow Fr, 18h

- SOLPS explains absence of target radius, R_t, dependence of detachment threshold in previous experiments^[1]
 - Predicts that constant angle of leg wrt. to target and strong baffling restore dependence

TCV's H-mode SOL surprisingly narrow

10

Maurizio, et al., NF (2021)

- Measured with Thomson scattering, confirmed with IR
- 2-3 times smaller than other devices at same B_{pol}

• TCV measurements agree with cross-machine scalings that include toroidal field, q_{95} and heating power, e.g. #9^[1]

[1] Eich, et al., NF (2013)

SOL studies extend into far SOL

• Absence of density shoulder in baffled divertor links its formation to neutral pressure in the main chamber

• H-mode shoulder in baffled and un-baffled divertor alike

See N. Vianello, et al., P3 \rightarrow We, 8h30

H. Reimerdes | 28th IAEA FEC | 11/5/2021

EPFL TCV programme addresses ITER and DEMO needs

EPFL Baffles decouple roles of $p_{n,main}$ and $p_{n,div}$ for pedestal performance

Sheikh, et al., NME (2021) 170kA H-mode (q₉₅~4.8), 1MW NBI 0.5 64038 66347 - "Moderate" $\delta \rightarrow$ type-I ELMs with baffles 0.4 0 • Higher pedestal temperature with baffle at high fuelling rates, i.e. 0.3 baffle at high fuelling rates, i.e. 0.2 high $p_{n,div}$ without baffles 0.1 ſ 6 5 n_e [10¹⁹/m³] 3 0.9 0.95 0.8 0.85 1.05 1.0

13

ρψ

Achieve 2-3x increase of radiated power without confinement degradation

EPFL H-mode regime extended to ITER baseline parameters

O. Sauter, et al., P4 \rightarrow We, 14h

- NBI heated ELMy H-mode with q_{95} =3.0, $\beta_{\rm N}$ =1.8, $H_{98({\rm V},2)}$ =1.0
 - Greenwald fraction, $f_{\rm G}$, lower

- Density too high for X3 renders NTMs inevitable and prevents stationary scenario
- Proximity to 'small ELM' regime at $q_{95} \ge 3.7$, higher δ and/or $f_{G,sep}$ See M. Faitsch, et al., P4 \rightarrow We, 14h

EPFL TCV programme addresses ITER and DEMO needs

EPFL Investigate negative triangularity (NT) as an ELM-free alternative

- NT promises H-mode confinement with L-mode edge
 - Pioneered in TCV in Ohmic and with strong ECH^[1,2]
 - Reproduced and extended to high beta in DIII-D^[3,4]
 - Recent studies also in ASDEX-Upgrade^[5]
- Improved NT-confinement well documented in TCV with electron heating
- Turbulent transport dominated by TEM and explained by global, non-linear gyrokinetic calculations (GENE)^[6]

[1] Pochelon, et al., NF (1999)[2] Camenen, et al., NF (2007)[3] Austin, et al., PRL (2019)

[4] Marinoni, et al., this conference, EX/6[5] Happel, et al., APS 2020[6] Merlo, et al., PPCF (2021)

EPFL Good confinement quality extends to NBI heated NT ...

Fontana, et al., NF (2020)

- Fluctuation amplitude decreases even with $T_e/T_i \sim 1$
 - Linear gyrokinetic simulations (GENE) indicate mixture of TEM and ITG turbulence regime

... and high beta

L. Porte, et al., P4 \rightarrow We, 14h & EX/6 \rightarrow Fr, 15h40

 Combine new capabilities of NBI heating in diverted NT configurations

• H-factor increases with NBI heating power \rightarrow more favourable P_{heat} and/or n_{e} scaling than $H_{98(y,2)}$

EPFL Turbulent transport decrease extends to edge ...

Han, et al., NF (2021)

• Midplane GPI diagnostic images SOL turbulence

EPFL Turbulent transport decrease extends to edge where it can be completely suppressed

Han, et al., NF (2021)

• Midplane GPI diagnostic images SOL turbulence

- In NT fluctuations disappear past separatrix
 - Leads to a suppression of main chamber PWI
 - Correlates with decrease of connection length

EPFL TCV programme addresses ITER and DEMO needs

EPFL Imaging RE synchrotron emission reveals momentum and pitch angle

Wijkamp, et al., NF (2021), Hoppe, et al., NF (2020)

- Image in the visible with filters to remove line radiation
- Shift plasma to test synthetic diagnostic (SOFT)

- Kinetic model predicts lower pitch for momentum
 - Significant non-collisional pitch angle scattering and radial RE transport – possibly caused by magnetic perturbation

EPFL Dynamic response of electron to ECCD probes fast electron transport

Choi, et al., PPCF (2020)

- Modulation experiment minimises steady-state perturbation
- Measure with hard x-ray spectrometer system (HXRS)

EPFL Dynamic response of electron to ECCD probes fast electron transport

Choi, et al., PPCF (2020)

- Modulation experiment minimises steady-state perturbation
- Measure with hard x-ray spectrometer system (HXRS)
- Compare to time-varying Fokker-Planck model LUKE
 - Synthetic diagnostic module R5-X2

Good agreement only, if e-transport localised in real and momentum space (QL-Dr)

EPFL TCV programme addresses ITER and DEMO needs

EPFLTCV boasts numerous RT-observers,actuators and control solutions

F, Felici, et al., P4 \rightarrow We, 14h

• Flexible digital control system

[1] Ravensbergen, et al., NF (2020)[2] Carpanese, et al., NF (2020)

EPFL TCV boasts numerous RT-observers, actuators and control solutions

Flexible digital control system

[1] Ravensbergen, et al., NF (2020)[2] Carpanese, et al., NF (2020)

Conclusion – TCV overview

- Rich programme balances ITER and DEMO needs with scientific discoveries (doublets not even mentioned)
 - Strong integration in European programme
 - Complemented with domestic programme and international collaborations
- Extend signature flexibility with flexible baffles for dedicated campaigns

Outlook: New sets of baffles

Allow of more or less closed divertor

Outlook: New sets of baffles

Allow of more or less closed divertor

Outlook: New sets of baffles

Allow of more or less closed divertor

Outlook: 2nd NBI in 2021

Control torque

- Advance fast ion studies
 - Range of fast-ion driven mode scenarios already developed
 - New fast-ion loss diagnostic (FILD) commissioned

Medium-term vision

- Increase flexible heating power with third dual-frequency gyrotron
- Use flexibility to test specific divertor solutions
 → "tightly baffled, long-legged divertor"

The TCV team

M. Agostini, E. Alessi, S. Alberti, Y. Andrebe, H. Arnichand, J. Balbin, F. Bagnato, M. Baguero-Ruiz, M. Bernert, W. Bin, P. Blanchard, T.C. Blanken, D. Brida, S. Brunner, J.A. Boedo, C. Bogar, O. Bogar, T. Bolzonella, F. Bombarda, F. Bouquey, C. Bowman, D. Brunetti, J. Buermans, H. Bufferand, L. Calacci, Y. Camenen, S. Carli, D. Carnevale, F. Carpanese, F. Causa, J. Cavalier, M. Cavedon, J.A. Cazabonne, J. Cerovsky, R. Chandra, A. Chandrarajan Jayalekshmi, O. Chellaï, P. Chmielewski, D. Choi, G. Ciraolo, I.G.J. Classen, S. Coda, C. Colandrea, A. Dal Molin, P. David, M.R. de Baar, J. Decker, W. Dekeyser, H. de Oliveira, D. Douai, M. Dreval, M.G. Dunne, B.P. Duval, S. Elmore, O. Embreus, F. Eriksson, M. Faitsch, G. Falchetto, M. Farnik, A. Fasoli, N. Fedorczak, F. Felici, O. Février, O. Ficker, A. Fil, M. Fontana, E. Fransson, L. Frassinetti, I. Furno, D.S. Gahle, D. Galassi, K. Galazka, C. Galperti, S. Garavaglia, M. Garcia-Munoz, B. Geiger, M. Giacomin, G. Giruzzi, M. Gobbin, T. Golfinopoulos, T. Goodman, S. Gorno, G. Granucci, J.P. Graves, M. Griener, M. Gruca, T. Gyergyek, R. Haelterman, A. Hakola, W. Han, T. Happel, G. Harrer, J.R. Harrison, S. Henderson, G.M.D. Hogeweij, J.-P. Hogge, M. Hoppe, J. Horacek, Z. Huang, A. lantchenko, P. Innocente, K. Insulander Björk, C. Ionita-Schrittweiser, H. Isliker, A. Jardin, R.J.E. Jaspers, R. Karimov, A.N. Karpushov, Y. Kazakov, M. Komm, M. Kong, J. Kovacic, O. Krutkin, O. Kudlacek, U. Kumar, R. Kwiatkowski, B. Labit, L. Laguardia, J.T. Lammers, E. Laribi, E. Laszynska, A. Lazaros, O. Linder, B. Linehan, B. Lipschultz, X. Llobet, J. Loizu, T. Lunt, E. Macusova, Y. Marandet, M. Maraschek, G. Marceca, C. Marchetto, S. Marchioni, E.S. Marmar, Y. Martin, L. Martinelli, F. Matos, R. Maurizio, M.-L. Mayoral, D. Mazon, V. Menkovski, A. Merle, G. Merlo, H. Meyer, K. Mikszuta-Michalik P. A. Molina Cabrera, J. Morales, J.-M. Moret, A. Moro, D. Moulton, H. Muhammed, O. Myatra, D. Mykytchuk, F. Napoli, R.D. Nem, A.H. Nielsen, M. Nocente, S. Nowak, N. Offeddu, J. Olsen, F.P. Orsitto, O. Pan, G. Papp, A. Pau, A. Perek, F. Pesamosca, Y. Peysson, L. Pigatto, C. Piron, M. Poradzinski, L. Porte, T. Pütterich, M. Rabinski, H. Raj, J.J. Rasmussen, G.A. Rattá, T. Ravensbergen, H. Reimerdes, D. Ricci, P. Ricci, N. Rispoli, F. Riva, J.F. Rivero-Rodriguez, M. Salewski, O. Sauter, B.S. Schmidt, R. Schrittweiser, S. Sharapov, U.A. Sheikh, B. Sieglin, M. Silva, A. Smolders, A. Snicker, C. Sozzi, M. Spolaore, A. Stagni, L. Stipani, G. Sun, T. Tala, P. Tamain, K. Tanaka, A. Tema Biwole, D. Terranova, J.L. Terry, D. Testa, C. Theiler, A. Thornton, A. Thrysøe, H. Torreblanca, C. K. Tsui, D. Vaccaro, M. Vallar, M. van Berkel, D. Van Eester, R.J.R. van Kampen, S. Van Mulders, K. Verhaegh, T. Verhaeghe, N. Vianello, F. Villone, E. Viezzer, B. Vincent, I. Voitsekhovitch, N.M.T. Vu, N. Walkden, T. Wauters, H. Weisen, N. Wendler, M. Wensing, F. Widmer, S. Wiesen, M. Wischmeier, T.A. Wijkamp, D. Wünderlich, C. Wüthrich, V. Yanovskiy, J. Zebrowski