OVERVIEW OF THE TJ-II STELLARATOR RESEARCH PROGRAMME TOWARDS MODEL VALIDATION IN FUSION PLASMAS

C. HIDALGO

ON BEHALF OF THE TJ-II TEAM AND COLLABORATORS

Email: carlos.hidalgo@ciemat.es

TJ-II research areas

- > Transport and asymmetries
- Physics of plasma fueling
- > Fast particles: actuators and stability
 - > Turbulence control: Zonal Flows
 - Edge SOL coupling physics
 - Power exhaust

1. TRANSPORT AND ASYMMETRIES

Predicted poloidal asymmetries in radial electric field (Er) are comparable to those found in the experiments [Doppler reflectometry].

T. Estrada et al., NF-2019; E. Sanchez et al., NF-2019

Different intensity in the density fluctuation spectra can be related to the poloidal locatlization of instabilities found in GK simulations.

T. Estada et al., NF-2019; E. Sánchez et al., NF-2019 / IAEA-2021

2. PLASMA FUELING

Zonal Flows arise/interact from/with turbulence self-organization and could act asPost-injection particle radial distributions can be understood qualitatively from neoclassical predictions. BUT pellets can also impact strongly MHD plasma stability and plasma turbulence [N. Panadero et al., NF-2018 / K. McCarthy et al., IAEA-2021].

Enhanced pellet ablation due to fast-electron impacts can lead to higher fuelling efficiencies (<40%) [K. McCarthy et al., PPCF-2019 / IAEA-2021]

Comparisons with HPI2 simulations have revealed that interactions between outward drifting pellet material and a resonant surface can lead to the abrupt deceleration and hence reduced pellet material loss [K. McCarthy et al., NF-2021 / IAEA-2021].

2-D mapping of plasma potential and density paves the way for model validation under positive and negative density gradient scenarios and asymmetries [Melnikov et al., EPS-2021].

Density fluctuations appear both at the positive and negative density gradient regions being stronger in the negative gradient region in agreement with TEM GK simulations [Sharma et al., PoP-2020].

3. FAST PARTICLES HIBP-1 & HIBP2 rho ≈ 0.3 LRC frequency spectra / NBI 1.5 (9)1.7 (9)1.7 (9)1.8 (9)1.9 (9)

density

f (kHz)

The impact of ECRH and ECCD has been investigated demonstrating a clear effect of ECCD on the observed AE mode spectrum [A. Cappa et al., IAEA-2021].

LRC are observed in potential fluctuations but not in density fluctuations [i.e. ZF-like structures]. It is an open question whether those ZFs can be directly driven by fast particle effects.

4. ZONAL FLOWS 1.0 0.5 0.0 -0.5 -1.0 9 0.4 0.4 0.2

The radial width of LRC is strongly affected by plasma heating and isotope mass [Losada et al., PPCF- 2021 / IAEA-2021]

Amplification of ZFs in the vicinity of the density limit [D. Fernández-Ruiz et al., NF-2021]

5. EDGE – SOL COUPLING

Turbulence radial spreading controlled by edge radial electric fields has been experimentally identified during the electron-ion root transition and edge biasing [Grenfell NF-2019 / NF-2020].

The radial electric field was also found to have a profound impact on turbulence intermittence [B. van Milligen et al., NF-2020]

6. POWER EXHAUST

Secondary electron emission in Liquid surfaces

- ✓ Oxidation of Li leads to an increase in the SEE yield. Annealing of the Li sample at 500 °C was enough to revert the values to those corresponding to clean surfaces.
- ✓ These results have a direct impact on the development of LM-based divertor targets in fusion [E. Oyarzabal et al., Nucl. Mater. and Energy 2021].

D retention

✓ It was concluded that an exponentially decaying retention as the First Wall temperature is increased takes place, with negligible D/Li ratios at T>350°C [A. de Castro et al., NF-2018 / E. Oyarzabal et al., NF-2021].

The **OLMAT facility**, aimed at testing prototypes under DEMO-relevant heat loads was constructed and installed.