The impact of ECRH and ECCD has been investigated demonstrating a clear effect of ECCD on the observed AE mode spectrum [A. Cappa et al., IAEA-2021]. LRC are observed in potential fluctuations but not in density fluctuations [i.e. ZF-like structures]. It is an open question whether those ZFs can be directly driven by fast particle effects.

The radial width of LRC is strongly affected by plasma heating and isotope mass [Losada et al., PPCF-2021 / IAEA-2021]

Amplification of ZFs in the vicinity of the density limit [D. Fernández-Ruiz et al., NF-2021]

Turbulence radial spreading controlled by edge radial electric field has been experimentally identified during the electron-ion root transition and edge biasing [Grenfell NF-2019 / NF-2020].

The radial electric field was also found to have a profound impact on turbulence intermittency [B. van Milligen et al., NF-2020]

Secondary electron emission in Liquid surfaces
- Oxidation of Li leads to an increase in the SEE yield. Annealing of the Li sample at 500°C was enough to revert the values to those corresponding to clean surfaces.
- These results have a direct impact on the development of LM-based divertor targets in fusion [E. Oyarzabal et al., Nucl. Mater. and Energy 2021].

D retention
- It was concluded that an exponentially decaying retention as the First Wall temperature is increased takes place, with negligible D/Li ratios at T>350°C [A. de Castro et al., NF-2018 / E. Oyarzabal et al., NF-2021].

The OLMAT facility, aimed at testing prototypes under DEMO-relevant heat loads was constructed and installed.