The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Simulation of Heating and Current Drive Sources for Scenarios of the ITER Research Plan

M. Schneider¹, V. Mitterauer¹, E. Lerche²,³, D. Van Eester³, O. Hoenen¹, S.D. Pinches¹, T. Johnson⁴

¹ ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul-lez-Durance, France
² LPP-ERMKMS, Association Eurfusion-Belgian State, TEC partner, Brussels, Belgium
³ Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, United Kingdom
⁴ KTH Royal Institute of Technology, 10044 Stockholm, Sweden

The H&CD systems in the ITER Research Plan

- Three external H&CD systems:
 - Electron Cyclotron wave: 170 GHz, 20 MW (+20)
 - Ion Cyclotron wave: 40-55 MHz, 20 MW (+20)
 - Neutral Beam Injection: 870 keV H⁺, 1 MeV D⁻, 33 MW (+16.5)
- One intrinsic H&CD process:
 - Fusion reaction:
 - 3.5 MeV ~80-100 MW for DT 15 MA/5.3 T baseline scenario

The ITER Integrated Modelling & Analysis Suite IMAS

- IMAS provides a standard and managed access to experimental and simulated data
 via Interface Data Structures (IDS)
- Aims at integrating free-boundary evolution, core-edge-SOL transport, divertor physics and PFC models to allow high fidelity physics simulations
- Is suitable for any fusion tokamak device
- Will be used for ITER data processing and analysis
- To know more: https://imas.iter.org

The IMAS Data Dictionary

- Core
- Edge
- Physics phenomena
- Fueling
- H&CD
- Other plant systems
- Diagnostics
- Data management

Towards a High Fidelity Plasma Simulator

The H&CD workflow and its Graphical Interface

- Choice of H&CD codes for each source
- Configuration of code parameters for each code

References

Note: higher NBI+ICRH synergy in FPPO-2: [A. Polevoi et al, submitted to NF (2020)]

- ICRH modelling: 10 MW:
 - 40 MHz, for N=1 D(e)
 - 53 MHz for n=2 T heating

- Weak RF- and RF-NBI synergy (+5% ICRH)
- Dominant electron heating (alphas)
 - Significant core ion heating (+40%) due to combined ICRH, NBI and a heating

Conclusion

- IMAS provides a standard for integrated modeling delivering a high level of modularity and flexibility
- A key deliverable is a high-fidelity plasma simulator including self-consistent calculation of free-boundary equilibrium + core-edge transport
- The H&CD workflow has been developed as an essential element of any high-fidelity plasma simulator, enabling the modeling of the synergy between H&CD sources
- The H&CD workflow has been integrated within the core-edge JNTRAC transport solver
- The DNA-free boundary equilibrium code is being coupled to the JNTRAC transport solver
- A first version of a high-fidelity plasma simulator is expected soon!