Validation of Pellet Ablation Models and Investigation of Density Fueling Needs on ITER and CFETR

by
Joseph McClenaghan

with
L.L. Lao1, P.B. Parks1, W. Wu1, J. Zhang2, S.P. Smith1, O.M. Meneghini1, J.X. Li3, K. Li2, V.S. Chan4, J. Candy1, G.M. Staebler1, B.C. Lyons1, P.B. Snyder1, E.A. Belli1, J.G. Li2, G.Q. Li2, Q. Zang2, T. Zhang2, M. Xue3, G.Y. Zheng3, A.P. Sun3

1. General Atomics
2. ASIPP
3. SWIP
4. USTC

Presented at
28th IAEA Fusion Energy Conference (FEC 2020)

May 14, 2021
High density operation (f_{gw}~1) is critical for fusion reactor

- Self-consistent (TGLF+NEO,EPED) simulations important for accurately predicting next generation device confinement
- Predicted increased $Q = P_{fus}/P_{aux}$ with increased density.

ITER super-H

Q_{DR} vs $f_{gw\,ped} Z_{eff}$

CFETR

$li \sim 0.93$, $f_{gw} \sim 1.17$

Z Deng et al., arXiv 2019

Solomon et al., NF 2014
Densities above Greenwald limit have been achieved with core pellet fueling

- Due to n_e peaking from core pellet fueling
- Greenwald limit likely due to pedestal, edge effect.

Greenwald PPCF 2002
Eich et al. NF 2018

- pedestal density remains below $n_{e,ped}/n_{gw} < 1$

Still limited $n_e/n_{gw} < 1.5$

Mahdavi et al. EPS 1997
OMFIT STEP module provides useful tool for integrated modeling for steady-state transport

- Self-consistent modeling loop iterates between kinetic evolution (TGYRO) current evolution (ONETWO), and magnetic equilibrium solver (EFIT)

- T_i, T_e, n_e, q, and T_i, T_e pedestal are evolved

- Pellet Ablation Module (PAM) has been incorporated in STEP

Meneghini et al. 2020
PAM has been developed for STEP transport modeling

- Pellet ablation (G) rate based on PELLET formulation for homogeneous DT mixtures

\[G = C \left(\frac{\langle W \rangle}{W_D} \right)^{2/3} \left(\frac{T_e}{2} \right)^{5/3} \left(\frac{r_p}{0.2} \right)^{4/3} n_e^{1/3} \left(e^{-14} \right) \]

Typical ITER baseline HFS injection \(v_p = 500 \text{ m/s}, r_p = 2.5 \text{ mm} \)

Houlberg et al., C, 1979
Parks et al., to be submitted
PAM has been developed for STEP transport modeling

- Arbitrary injection angles
- General geometry
- Supports multiple layered pellets
 - Shell pellets
- Modular to easily add new models
 - B_t dependence of pellet ablation
B\textsubscript{t} dependence of ablation could significantly improve ITER core fueling prospects

- Recent 2D Eulerian-Lagrangian modeling suggested there is B\textsubscript{t} dependence of ablation rate

 \[G \propto B_{t}^{-0.872} \]

 Bosviel et al., NF 2020

- Double the depth of ablation of pellet in ITER

- Experimental comparisons are ongoing to verify dependence
Pellet ablation and ∇B drift effect important in determining pellet fueling

- Local pressure bump combined with ∇B induces an $\nabla \times B$ flow which causes pellet mass to drift in R-direction

 P. B. Parks et al. PRL 2005

- Reduced scaling for model used for ITER

 $\Delta_{\text{drift}} \propto Bt^{-0.15}Te0^{-0.13} T_{e,\text{ped}}^{0.5} r_p^{0.76} q_{95}^{-0.15}$

 Baylor et al., NF 2007

- More complete models to be implemented in PAM
Pellet deposited onto 2D grid \((\rho, \theta)\) as Gaussian cloud

\[
n_{\text{pellet}}(t, \rho, \theta) = G(t) \exp \left(- \frac{(R - R_p - \Delta_{\text{drift}})^2}{R_c^2} \right. \\
\left. - \frac{(Z - Z_p)^2}{Z_c^2} \right)
\]

- Cloud integrated for steady-state particle source for STEP modeling

\[
S_{n_e}(\rho) = \int_{\text{inj}} \int n_{\text{pellet}}(t, \rho, \theta) dt \, dl / \int dl
\]

\[
S_{n_e}(\rho) = \frac{n_e(10^{19} \text{m}^{-3}) \text{after pellet}}{n_e(10^{19} \text{m}^{-3}) \text{before pellet}}
\]

\[
G(10^{24} \text{ atoms/s})
\]
PAM has been used to predict traditional and shell pellets

- PAM shows good agreement with PELLET and reasonable agreement with DIII-D experiments.
 - Incorporation of ∇B models will improve agreement with experiments

- PAM predicts 40 µm diamond shell could deliver a payload to $\rho=0.3$
 - Similar with experiments

Hollmann et al. PRL 2019
The STEP workflow with pellet fueling has been tested against DIII-D experiments.

- Experimental profiles examined after initial transient phase.

- Adding pellet fueling source to STEP increases density and lowers temperature, consistent with experiments.
The STEP workflow is also being applied to various other tokamak devices.

- **STEP prediction of EAST H-mode discharge with** $P_{nbi}=5$ **MW finds reasonable agreement with the experiment.**

- **STEP has been used to predict an ECH heated H-mode on HL-2M**
ITER advanced inductive scenario predicts near Q=10 with strong pellet fueling

- 12 MA advanced inductive hybrid scenario
- Q=9 predicted with $f_{gw,ped}=1$ and max pellet fueling.
CFETR H-mode scenarios improve dramatically with increased density source

- Gaussian density source centered at $\rho = 0.4, 0.5, 0.6$

- Deep core density fueling ($\rho \leq 0.6$) likely difficult with conventional pellets

- Potential path forward could be shell pellets

Hollmann et al PRL 2019
Realistic shell pellet source shows similar improvement in performance

- **LFS injection**
 - $v_p = 2000 \text{ m/s}$
 - $r_{p,DT} = 3\text{ mm}$

- **Zeff scales with carbon shell impurity concentration**

- **Predicted fusion**
 - $P_{fus} = 1\text{ GW}$ and $f_{\text{burn}} = 3\%$
 - are reached for shell thicknesses above 220 μm and $f_p = 2-4 \text{ Hz}$,
Pellet fueling is critical for ITER and reactors

- Pellet Ablation Module (PAM) has been developed and tested for pellet fueling transport studies

- Integrated modeling with STEP predicts improved fusion performance with pellet fueling in both ITER and CFETR

- CFETR H-mode scenario requires significant central fueling for peaked density
 - Shell pellets are potential way forward.