Validation of Pellet Ablation Models and Investigation of Density Fueling Needs on ITER and CFETR

by

Joseph McClenaghan

with

L.L. Lao¹, P.B. Parks¹, W. Wu¹, J. Zhang², S.P. Smith1, O.M. Meneghini¹, J.X. Li³, K. Li², V.S Chan⁴, J. Candy¹, G.M. Staebler¹, B.C. Lyons¹, P.B. Snyder¹, E.A. Belli, J.G. Li², G.Q. Li², Q. Zang², T. Zhang², M. Xue³, G.Y. Zheng³, A.P. Sun³

- 1. General Atomics
- 2. ASIPP
- 3. SWIP
- 4. USTC

Presented at 28th IAEA Fusion Energy Conference (FEC 2020)

May 14, 2021

High density operation (f_{gw}~1) is critical for fusion reactor

- Self-consistent (TGLF+NEO, EPED) simulations important for accurately predicting next generation device confinement
- Predicted increased Q=P_{fus}/P_{aux} with increased density.

Densities above Greenwald limit have been achieved with core pellet fueling

- Due to n_e peaking from core pellet fueling
- Greenwald limit likely due to pedestal, edge effect.

Greenwald PPCF 2002 Eich et al. NF 2018

- pedestal density remains below n_{e,ped}/n_{gw}<1
- Still limited n_e/n_{gw} < 1.5

Mahdavi et al. EPS 1997

OMFIT STEP module provides useful tool for integrated modeling for steady-state transport

- Self-consistent modeling loop iterates between kinetic evolution (TGYRO) current evolution (ONETWO), and magnetic equilibrium solver (EFIT)
- T_i, T_e, n_e, q, and T_i, T_e pedestal are evolved
- Pellet Ablation Module(PAM) has been incorporated in STEP

Meneghini et al. 2020

PAM has been developed for STEP transport modeling

 Pellet ablation (G) rate based on PELLET formulation for homogeneous DT mixtures

$$G = C \left(\frac{\langle W \rangle}{W_D}\right)^{2/3} \left(\frac{T_e}{2}\right)^{5/3} \left(\frac{r_p}{0.2}\right)^{4/3} n_{e14}^{1/3}$$

Houlberg et al., C , 1979 Parks et al., to be submitted Typical ITER baseline HFS injection v_p =500 m/s, r_p =2.5 mm

PAM has been developed for STEP transport modeling

- Arbitrary injection angles
- General geometry
- Supports multiple layered pellets
 - Shell pellets
- Modular to easily add new models
 - B_t dependence of pellet ablation

B_t dependence of ablation could significantly improve ITER core fueling prospects

 Recent 2D Eulerian-Lagrangian modeling suggested there is B_t dependence of ablation rate

No B_t dependence B_t dependence

Bosviel et al., NF 2020

- Double the depth of ablation of pellet in ITER
- Experimental comparisons are ongoing to verify dependence

Pellet ablation and VB drift effect important in determini pellet fueling

 Local pressure bump combined with ∇B induces a ExB flow which causes pellet mass to drift in Rdirection

P. B. Parks et al. PRL 2005

Reduced scaling for model used for ITER $\Delta_{drift} \propto Bt^{-0.15}Te0^{-0.13}$

 $T_{e,ped}^{0.5}r_p^{0.76}q_{95}^{-.15}$ Baylor et al., NF 2007

 More complete models to be implemented in PAM

Pellet deposited onto 2D grid (ρ,θ) as Gaussian cloud

$$n_{pellet}(t,\rho,\theta) = G(t) \exp\left(-\frac{(R-R_p - \Delta_{drift})^2}{R_c^2} - \frac{(Z-Z_p)^2}{Z_c^2}\right)$$

 Cloud integrated for steady-state particle source for STEP modeling

$$S_{n_e}(\rho) = f_{inj} \int n_{pellet}(t,\rho,\theta) dt dl \Big/ \int dl$$

PAM has been used to predict traditional and shell pellets

- PAM shows good agreement with PELLET and reasonable agreement with DIII-D experiments.
 - Incorporation of ∇B models will improve agreement with experiments
- PAM predicts 40 μm diamond shell could deliver a payload to ρ=0.3
 - similar with experiments

Hollmann et al. PRL 2019

The STEP workflow with pellet fueling has been tested against DIII-D experiments

 Experimental profiles examined after initial transient phase.

 Adding pellet fueling source to STEP increases density and lowers temperature, consistent with experiments

The STEP workflow is also being applied to various other tokamak devices

- STEP prediction of EAST H-mode discharge with P_{nbi}=5 MW finds reasonable agreement with the experiment.
- STEP has been used to predict an ECH heated H-mode on HL-2M

ITER advanced inductive scenario predicts near Q=10 with strong pellet fueling

- 12 MA advanced inductive hybrid scenario
- Q=9 predicted with f_{gw,ped}=1 and max pellet fueling.

CFETR H-mode scenarios improve dramatically with increased density source

- Gaussian density source centered at ρ=0.4,0.5, 0.6
- Deep core density fueling ' (p<=0.6) likely difficult with conventional pellets
- Potential path forward could be shell pellets Hollmann et al PRL 2019

Realistic shell pellet source shows similar improvement in performance

- LFS injection
 - $v_{p} = 2000 \text{ m/s}$
 - $r_{p,DT} = 3mm$
- Zeff scales with carbon shell impurity concentration
- Predicted fusion P_{fus}=1GW and f_{burn}=3% are reached for shell thicknesses above 220 μ m and f_p=2-4 Hz,

Pellet fueling is critical for ITER and reactors

- Pellet Ablation Module (PAM) has been developed and tested for pellet fueling transport studies
- Integrated modeling with STEP predicts improved fusion performance with pellet fueling in both ITER and CFETR
- CFETR H-mode scenario requires significant central fueling for peaked density
 - Shell pellets are potential way forward.

