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Abstract

In magnetically confined fusion burning plasmas like tokamaks, high central temperature and current maximize the
fusion reactivity, but can also depress the central magnetic safety factor q. If qo falls to unity or below, a high pressure gradient
can destabilize m/n = 1/1 sawtooth crashes. In central regions with q ≃ 1 and low magnetic shear, nearly ideal quasi-
interchange (QI) instabilities, driven by interchange flows across the magnetic field instead of by magnetic reconnection, can
produce complete central sawtooth crashes. Numerical simulation of an ITER-shape plasma with the extendedMHD codeM3D
shows that QI modes can have unique properties. They can be fundamentally nonlinear, with multiple toroidal harmonics n
at small amplitude, where the higher m = n > 1 harmonics align inside q = 1 to maximize the radial displacement of the
1/1 mode. Like the 1/1 internal kink sawtooth, the final crash that flattens the central temperature is significantly faster than
the earlier instability, nearly ideal, and expels plasma to well outside q = 1. The simulations match detailed experimental
observations of QI sawteeth and reproduce the characteristic differences with internal kink sawteeth. The final fast crashes also
share basic features with the fast central crashes seen in resistive double tearing modes at q = 2 or 3. They suggest a common
nonlinear trigger, an interchange instability driven by the large normal magnetic curvature that is produced when the original
MHD instability grows to sufficiently large amplitude that it creates narrow, highly localized poloidal bulges in the magnetic
field. The nonlinearly driven normal curvature interchange may be an important instability in magnetically confined plasmas.
It may also be more unstable in fusion burning plasmas, at higher central temperatures and pressure gradients.

1. INTRODUCTION

In fusion tokamaks, high centrally peaked temperatures and plasma currents increase the fusion reactivity, but
also depress the central magnetic safety factor q, often down to unity or below, destabilizing m = n = 1 MHD
instabilities that cause periodic sawtooth crashes that flatten the temperature and current density over a radius larger
than q = 1. At sufficiently low magnetic axis values qo < 1, the 1/1 internal kink with magnetic reconnection is
unstable, but for qo near unity at low magnetic shear (1/q)(dq/dr) ≪ 1, the strongest instabilities are nearly ideal
quasi-interchange (QI) modes dominated by flows across the magnetic field [1,2].

Numerical simulation of an ITER-shaped DIII-D discharge with the 3D extended MHD code M3D [3,4] shows[5]
that QI modes can drive an MHD sawtooth crash that completely flattens the central temperature and current den-
sity. It reproduces the characteristic QI crash properties and the differences with the internal kink seen in detailed
experimental observations in DIII-D[6] and early JET [7]. Subsequent experimental observation of QI crashes in
related DIII-D plasmas [8] show similar behavior. They also support a 1/1 mode magnetic well stability criterion
[6,9] that includes the effect of flux surface shaping (ellipticity and triangularity), beta, and q. The criterion helps
explain why the early theoretical analyses [10] and simulations [11] in circular plasmas predicted QI mode satura-
tion short of a complete crash and why the q ≃ 1m = nQI-like modes observed in KSTAR [12] and other plasmas
with strong central ellipticity but weak triangularity required local heating or current drive.

The final fast sawtooth crash of the q = 1 QI sawtooth has important similarities to other fast central crashes and
suggests a possible common trigger. Sec. 2 discusses the QI sawtooth and its fast crash and compares it two other
instabilities, the q = 1 internal kink sawtooth and the q > 1 double tearing mode (DTM) crash. Sec. 3 shows
that an interchange mode destabilized by a strong normal magnetic curvature, can easily develop when an equilib-
rium MHD instability grows to large amplitude and generates region(s) of localized strong poloidal curvature, has
properties consistent with the observed fast crash. Sec. 4 is a summary.
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2. FAST CRASHES
2.1 Quasi-Interchange Sawtooth

Sawteeth caused by quasi-interchange (QI) modes in central q ≃ 1 regions have been studied for many years
[1,2,7,10], but experimentally it has often difficult to distinguish them from internal kink sawteeth. Interest in
QI instabilities has revived recently and more varieties have been observed, as it has been recognized that fusion
plasmas with low magnetic shear central regions with q ≃ 1 offer possible advantages for fusion burning.

A recent numerical study of a DIII-D plasma with ITER shape and qo ≃ 0.95 [5] finds new QI properties in
shaped, high beta plasmas. The central QI instability is intrinsically nonlinear, with multiple toroidal harmonics
at small amplitude, dominated by n = 1 and 2 at comparable magnitudes, that grow coherently together over
many e-folding times. Inside q ≤ 1, the m = n harmonics align to maximize the radial displacement of the 1/1
mode. The individual harmonics resemble theoretically expected linear quasi-interchange modes [1,2]. The higher
m = n components inside q = 1 concentrate closer to the outer q = 1 surface where destabilizing imbalance in
the interchange magnetic well effects are cancelled less completely, than on more central flux surfaces.

The mode is driven by the quasi-interchange flows across the low shear magnetic field. As expected, the mode is
nearly ideal. The entire evolution, from the formation of the small amplitude perturbation, to the QI crash of the
central temperature and the subsequent temperature flattening, followed by the current density flattening, is nearly
independent of resistivity for Lundquist numbers S = 106 to 108. There is no resonant magnetic reconnection.

For the quasi-interchange mode, the degree of magnetic shear is relative to the strength of the force driving the
interchange flows. In this case, as in other plasmas that have significant central q ≃ 1 regions, the shear remains
rather weak for some distance outside q = 1. (The q = 1 radius is at approximately r/a = 0.3 on the outer
midplane, and q = 3/2 is rather far out at about r/a = 0.6, for q95 = 4.2.) The exterior shear is smaller than in
most higher shear plasmas with lower axis qo. The radial extent of the central mode convective flow cells and the
distance outside q = 1 that the crash can expel the central plasma are relatively large.

While the temperature appears to follow the magnetic field before the crash, in reality both move due to the flow.
Simulation with M3D [5] shows that the mode develops into a fast final crash of the central temperature, where
the plasma is expelled in narrow poloidal flow channels. Unlike the internal kink sawtooth, where the outflow is
controlled by the single magnetic reconnection point, the QI outflow splits poloidally into two channels about±60
degrees poloidally on either side of the original mode direction (Fig. 1(d)). These channels are spread apart and
narrowed due to nonlinear backflow along the center of the original outflow direction from convective cells that
form in the gap. The process is shown in Fig 1, which shows an expanded cross section of the central plasma. The
background color shows the total MHD temperature T . Note the extent of the original convective flow cells well
outside q=1, even in the small amplitude mode (a). They extend further as the mode grows.

Figure 2 shows magnetic puncture plots for the growing nonlinear mode of Fig. 1 over most of the plasma cross
section. Magnetic islands develop from very small perturbations of the field in the low magnetic shear region
carried by the flows, without resonant reconnection. Comparison with Fig. 1 shows that the magnetic boundaries
follow the flow contours rather than the smoother T contours. By the crash time t = 584.8 in Fig. 2(c), the magnetic
structure has also narrowed into two channels near q = 1.

The QI sawtooth crash is not observed in the actual plasma, because the temperature and pressure profiles are
actually hollow over q ≤ 1, rather than weakly peaked as in the EFIT equilibrium reconstruction used for the
simulation. However, QI sawteeth are observed in other similar plasmas, reported at this conference [8].

The post-crash plasma has central q = 1 with even lower magnetic shear. It also naturally develops QI-type modes
with multiple harmonics, mainly n = 1 and 2. The n = 2 harmonic, in addition to n = 1, also appears in the actual
plasma, as well as in other shaped QI sawtooth plasmas, including the DIII-D QI/IK sawtooth study [6] and early
JET sawteeth ([7], detailed SXR picture in [13]).

2.2 Internal Kink Sawtooth

The simulation results show that the final fast crash of the q = 1 QI sawtooth has some basic similarities with the
fast crash of the q = 1 internal kink sawtooth at lower qo < 1 and higher magnetic shear.
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Figure 1. QI mode and start of crash. a) low amplitude mode with comparable n = 1 and 2, b) increasing amplitude where
n = 1 begins to increase relative to n = 2, c) outflow begins to separate into two channels d) narrow, strong outflow velocity
channels have partially expelled plasma and temperature to well outside q = 1. The outflow is nearly finished by t = 607.
Background solid color shows total temperature T (close to the pressure). Red arrows show flow directions (not to scale).
Black lines show equi-spaced contours of poloidal velocity stream functionU , (positive values are solid lines, negative dashed).
Multicolor lines are contours of perturbed magnetic flux ψ̃. Variables scaled to instantaneous maximum values over the plasma;
maximum temperature values at upper right in each frame. Concentric ellipses (dotted) show q(ψ) = 1, 1.5, 2, and 3 surfaces.
(q = 1 in dark purple band; q=3/2 at outer boundary of red band)
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d) e) f)Figure 2. Magnetic puncture plots for the QI crash of Fig. 1.
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Figure 3. Later internal kink sawtooth crash and loss of the hot core at times a) t = 1058.1, b) 1071.5, c) 1077.7, and d)
1084.3τA. a) Hot core and island. c) Final crash outflow (black contours) directly through the center of the remaining hot core
at t = 1077.7 (core has rotated slightly counter-clockwise from previous time) creates d) Hot layer forms a partial annulus
outside q = 1, that is equilibrating along field lines. Background solid color shows total pressure p (close to T ). Black lines
show equi-spaced contours of poloidal stream function U , multicolor lines the contours of perturbed magnetic flux ψ̃ (positive
values are solid lines, negative dashed). Variables scaled to instantaneous maximum values over the plasma. Concentric ellipses
(dotted) show q(ψ) = 1, 1.5, 2, and 3 surfaces. From M3D simulation of S = 107 higher resolution case [15].

Experimentally, a final fast crash occurs in the q = 1 internal kink mode sawtooth when the contact region of the hot
central core with the q ≃ 1 surface becomes highly localized poloidally Some degree of toroidal localization n > 1
also develops, but is harder to measure accurately. Without strong localization, the crash is slow or non-existent.
Electron Cyclotron Emission Imaging (ECEI) [14] shows that the final rapid expulsion of the electron temperature
from q < 1 occurs through a poloidally narrow, radially directed channel that extends beyond q = 1. The expelled
temperature equilibrates along field lines to form a hot annulus outside q = 1. This behavior is reproduced by
MHD numerical simulations [15]. Nozzle-like expulsion and a final hot annulus outside q = 1 are seen in the QI
sawteeth, in M3D simulations and in the early JET sawteeth that originally inspired the idea of a QI sawtooth crash.

Simulation[15] with M3D showed that the IK sawtooth followed the expected resistive development of a 1/1 mag-
netic island and approximately circular hot core inside q = 1. The core shrunk steadily until small, when a sudden
fast crash The time history of the harmonics for several cases (Figs. 1–2 in [15]) showed that the mode first grew
at a constant exponential linear rate. As it became nonlinear, the velocity began to grow at a faster steadily accel-
erating rate up to the final crash. The poloidal magnetic flux continued to grow at the constant exponential rate
until immediately before the final crash, when the hotter temperature was completely lost from inside q = 1. The
approach to the crash was independent of resistivity. The time-histories at different resistivities between Lundquist
numbers S = 106–108 overlaid almost exactly for the growing mode preceding the final crash, even though the
initial linear growth rates were quite different. (The history plotted volume integrals of the n=1 harmonics over the
plasma. Immediately before the final crash the higher harmonics make a larger contribution.)

An example crash is shown in Fig. 2. The background color scheme differs from Fig 1, but black contours still
represent the poloidal velocity stream function. Note the compressed, narrow flow channel in the poloidal stream
function U at the penultimate time (c), t = 1077.7 as the hot core is being lost.

2.3 Double Tearing Mode

The Double TearingMode (DTM) [16] can also generate strong fast crashes of pressure and temperature [17] in two
types of crashes, on and off the central magnetic axis. The crashes appear in RMHD as well as MHD simulations.

In tokamaks, the DTM can grow in a non-monotonic q profile, where two rational magnetic surfaces, in tokamaks
typically qs = 2 or 3, surround a somewhat lower-q region. Magnetic island chains form at each qs-surface, linked
by the radial displacement so that their X- and O- points anti-align. The outer islands typically grow larger first and
squeeze the inner qs islands into poloidally narrowing regions. The inner islands are forced to extend radially and
may interact (reconnect) with the inner core inside qs. They also extend outward toward the outer qs surface and
can come to resemble radial “spokes’’ on a wheel. They contact the outer qs surface at the X-points of the outer
islands, separating the outer islands but preserving their contact at the X-points, where they continue to reconnect
and grow. At first, the inner islands have little interaction with the outer X-points. The narrowing islands gradually
develop an outward radial flow aligned along their length. If the poloidal width of the inner islands there becomes
sufficiently narrow, a sudden fast crash through their outer tips can flatten the pressure over the entire annulus
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q < qs annulus. The crash is nearly independent of resistivity. If the inner qs surface is also sufficiently close to
the magnetic axis and the instability strong enough, the crash can extend through the axis qo > qs, an “on-axis”
crash. If the inner islands do not narrow sufficiently at their outer X-points, no fast crash occurs (in RMHD and
MHD simulation [18]). The critical magnetic curvature near the X-point (poloidal width) is similar to that of the
QI q = 1 fast crash.

The multiple, well-separated inner spokes of the DTM have some resemblance to the two outflow legs of the QI
sawtooth core and the fast crash appears to be a similar cross-field expulsion. There is one important difference,
however. The basic DTM is a resonant resistive tearing instability at q = qs. Reconnection drives the growth of
the outer island at the outer qs surface and sometimes, reconnection of the inner islands with the central magnetic
core. (The core reconnection requires that the inner magnetic X-points of the inner islands shift poloidal location.)

The DTM sawtooth progresses through three stages. The first two are similar to resistive magnetic island growth
– linear exponential growth followed by a slower nonlinear Rutherford exponential growth with γ ∼ η. Then a
nearly ideal fast crash suddenly grows out of the Rutherford phase, with an accelerating growth rate that is much
faster than exponential. The outer X-point changes steadily during the Rutherford phase, but its characteristics
change in the fast crash. The outer islands continue to grow steadily until the final fast crash removes the driving
factors, but the growth rate is much slower than crash.

The inner islands have only weak reconnection at the outer X-points because the radial flow into the X-point is
weak and their radial gradients at their tip are also weak, similar to the 1/1 q = 1 QI mode.

3. NORMAL CURVATURE INTERCHANGE

Because of the large separation of scales, the trigger for the nonlinear normal curvature interchange can be seen
from the free energy of an instability in a slowly varying background plasma that describes the growth of the initial
MHD instability. The interchange term in the free energy can arise from two potentially independent sources the
magnetic island configuration as reflected in the local perpendicular current density term J × B, or the pressure
gradient∇p. These are equivalent in a static or slowly evolving plasma, but decouple in the presence of background
plasma flow. The explicit pressure-gradient term is also removed by incompressibility, but in this limit it can be
replaced by the magnetic term.

The following discussion summarizes the basic relations, discussed in a separate paper.

The Frieman-Rotenberg equations for a small MHD perturbation can be used to take into account background flow,
but in the fast crash the background velocity and its effects are small compared to the growth rate of the new mode.
This means that the free energy terms involving the background velocity, except perhaps for convection, can be
dropped relative to the other mode terms. The perturbation is assumed to have a temporal/spatial separation of
variables, f̂(x, t) = f̃(x) exp(γt). The growth rate γ can be complex, but for the fast crash, it is mostly real. The
plasma displacement ξ is defined in terms of the Lagrangian velocity by v(r0+ ξ, t) = (Dr0/Dt)+ (Dξ0/Dt) =
v0 + v0 · ∇0ξ + (∂ξ/∂t), where the superscript 0 designates quantities that describe the unperturbed flow. In the
following equations, it is dropped from all the background plasma variables and operators.

The linearized equations for the momentum, pressure, and combined Faraday’s and Ohm’s laws become

ργξ = −B̃× J+ J̃× B−∇p̃− ρ(v · ∇)ξ − ρ(ξ · ∇)v (1)
p̃ = −ξ · ∇p− Γp∇ · ξ (2)
B̃ = ∇× (ξ × B) + (η/γ)∇2B̃, (3)

where Γ is the ratio of specific heats. In p̃ and B̃, the explicit background velocity terms have been dropped. The
electrical resistivity η = η(Te) is assumed to be small compared to γ, so that the last term in Eq. (3) is dropped in
δW . The thermal conductivity terms in the pressure equation (2) have also been dropped, since typically they have
only small effects on ordinary MHD perturbations and the fast crash is even faster.
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The Frieman-Rotenberg force operator G(ξ) satisfies

G(ξ) = 2ρ(v · ∇)
∂ξ

∂t
+ ρ

∂2ξ

∂t2
(4)

G(ξ) = F(ξ) +∇ ·
(
ξρ(v · ∇)v− ρv(v · ∇)ξ

)
(5)

F(ξ) = −B× (∇× B̃) + J× B̃+∇
[
Γp(∇ · ξ) + ξ · ∇p

]
,

(6)

where F is the force operator for a static plasma. The free energy δW ≡ (1/2)
∫
dτ ργ2ξ2 is obtained by dotting

ξ into Eq. 4 and taking the volume integral over the plasma, as 2δW + γ
∫
dτ ρ v · ∇ξ2 =

∫
dτ ξ · G(ξ). Writing

terms in the form ∇ · C and converting volume integrals to surface integrals
∫
dS · C over the boundary surface

and assuming that either the normal displacement or C · dS there is zero,∫
dτ ξ ·G(ξ) =

∫
dτ

{
B̃2+J ·(ξ× B̃)+(ξ ·∇p)(∇·ξ)+Γp(∇·ξ)2−ρ(v ·∇)v ·(ξ ·∇)ξ+ρ

(
(v ·∇)ξ

)2}
. (7)

The second line represents the static background contribution
∫
dτ ξ · F(ξ) from Eq. (6) and the third line the

background flow effects from Eq. (5). The squared terms are always stabilizing.

The current term J · (ξ × B̃) can be split into parallel and perpendicular currents, J · (ξ × B̃) = (J∥/B)(ξ × B) ·
B̃ − (1/B2)ξ · [(J × B)(B · B̃) − B((J × B) · B̃)], where J⊥ ≡ (1/B2)(B × (J × B)) and J∥ ≡ J · B/B. The
second, perpendicular current piece can be evaluated in terms of the magnetic curvature κ ≡

(
b̂ · ∇

)
b̂ and the

parallel perturbed field B · B̃ from Eq. (3).

In a magnetically confined static-background toroidal plasma with finite pressure gradient ∇p = J× B and com-
pressibility∇ · ξ, the free energy is [20]∫

dτ ξ ·G(ξ) =

∫
dτ

{∣∣∣∣B̃− ξ · ∇p

B2
B
∣∣∣∣2 − J∥

B
(ξ × B) · B̃− 2(ξ · ∇p)(ξ · κ) + Γp|∇ · ξ|2

}
, (8)

where all occurrences of J × B have been replaced by ∇p. The first, squared term on the right, containing B̃2,
represents the stabilizing effects of magnetic field line stretching, where the J⊥ terms proportional to (B · B̃) have
been added. The J∥ term represents the internal kink. The third term is usual expression for the interchange mode
free energy. It arises from the compressional pressure gradient term (ξ · ∇p)(∇ · ξ) in Eq. (7), when ∇ · ξ is
expressed in terms of B · B̃ and κ. The last term is the stabilizing compressional term. The remaining terms supply
the cross term in the field line stretching.

In an incompressible plasma with flow,∇·v = ∇·ξ = 0, the usual source of the interchange term, (ξ ·∇p)(∇·ξ),
vanishes. However, terms ξ · J× B can be added and subtracted from B̃2 to obtain∫

dτ

{∣∣∣∣B̃− ξ · (J× B)
B2

B
∣∣∣∣2 − J∥

B
ξ × B · B̃− 2

(
ξ · (J× B)

)(
ξ · κ

)
− ρ(v · ∇)v · (ξ · ∇)ξ + ρ

(
(v · ∇)ξ

)2}
. (9)

This describes RMHD plasmas and is equivalent to the usual interchange if J× B ≡ ∇p.

A general compressible solution that keeps the∇p and J× B terms separate is∫
dτ

{∣∣∣∣B̃− ξ · (J× B+∇p)

2B2
B
∣∣∣∣2 − J∥

B
(ξ × B) · B̃− 2(ξ · ∇p)(ξ · κ) + Γp|∇ · ξ|2

− ρ(v · ∇)v · (ξ · ∇)ξ + ρ
(
(v · ∇)ξ

)2
−

[
ξ · (J× B+∇p)

2B2
B
]2

+
(ξ · ∇p)(ξ · (J× B))

B2
+

(ξ · ∇p)

B4
B · ∇[(ξ · B)B2] + B̃ · (J× B)

B2
(ξ · B)

}
.

Again, v terms apart from the Frieman-Rotenberg convection have been dropped. The extra terms on the last line are
small in general for the interchange, because they each contain one component of ξ parallel and one perpendicular
to B.

The normal curvature interchange instability is much stronger than the typical interchange in the equilibrium
plasma, even though both come from the −2(ξ · ∇p)(ξ · κ) term. In a typical toroidal equilibrium such as a
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tokamak, the magnetic curvature κ is primarily geodesic and lies in the magnetic flux surface. Its large size forces
the mode displacement ξ to also be primarily geodesic, with only a small normal component radial to the flux
surface (cf. [20]). The main interchange effects on the plasma come from the normal displacement.

For the normal curvature interchange, the strong local poloidal variation in the curvature at the beginning of the
fast crash creates a dominant normal (radial) component. The main active displacement is also radial. Even if
the pressure gradient is relatively modest, the net instability is much stronger. In the examples here, the poloidal
variation has equivalent poloidal harmonic m ∼ 6 or more, much larger than the m <∼ 1 of the equilibrium
mode, even without taking into account that the radial displacement is strongly reduced relative to the total (by a
few orders in a small parameter expansion such as the inverse aspect ratio [20]). It is not surprising that a sudden
fast-growing MHD instability appears once the normal curvature begins to dominate the other terms.

4. SUMMARY

In toroidal fusion plasmas, a different type of fast growing, highly localized, and nearly ideal interchange instability
can appear, driven by a large normal magnetic curvature that is produced by local poloidal bulging of the magnetic
field. It has an accelerating, faster-than-exponential growth rate. It can cause a rapid crash of the temperature and
plasma in the interior plasma region as they are carried out through one or more localized radial flow channels. The
required destabilizing magnetic curvature can easily be produced by certain conventional MHD instabilities, if they
are able to grow to a sufficiently large nonlinear amplitude that produces a strong distortion of the total magnetic
flux surfaces. The type of the initial instability is less important than its ultimate large size and distorting effects,
although the analysis is complicated by the fact that the original instability can continue to grow until the final
crash. Examples include the q = 1 1/1 resistive internal kink and the nearly idealm = n quasi-interchange mode,
and also double tearing modes over the annulus between two q = qs = m/n surfaces, typically qs = 2 or 3. The
normal curvature instability appears in RMHD and MHD simulations. Its trigger appears in the free energy of an
interchange-type instability growing on a slowly evolving, non-axisymmetric background and is much larger than
the free energy of interchange instabilities in typical magnetically confined equilibria. In q = 1 sawteeth and in
DTMs located sufficiently close to the magnetic axis, the final crash affects the entire central plasma inside the outer
resonant surface. In fusion tokamak examples, the poloidal width of the curved field at the onset of the fast crash
has roughly the same size in all three cases, roughly m ∼ 6. The instability should appear in other magnetically
confined plasmas where the magnetic curvature can be similarly changed.
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