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Compact equations for 3D plasma equilibrium
Friday 14 May 2021 18:25 (20 minutes)

A system of equations describing the static three-dimensional equilibrium of plasma in a magnetic field with
toroidal magnetic surfaces is obtained.

The problem of finding the equilibrium plasma configurations in a magnetic field, B, is among the first-priority
problems in plasma physics and its applications. Themain tool for the calculation of axisymmetric equilibrium
magnetic configurations with nested magnetic surfaces Ψ(r) = const: B · ∇Ψ = 0 (r is the radius-vector) is
the Grad–Shafranov equation (GSE) [1, 2]:
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is the Grad-Shafranov operator written in cylindrical coordinate system. Plasma pressure, p, is known
to be a function of Ψ for any static equilibrium. For the axisymmetric equilibria (∂/∂φ = 0) function
F , which characterizes poloidal current, appears to be function of Ψ too.

Equation (1) is usually solved for Ψ at given dependences p(Ψ) and F (Ψ) and under the assumption
that one of the surfaces Ψ = const is a boundary, i.e., a zero pressure surface. An alternative way for
the calculation of equilibrium with the GSE is the assignment of the fluxΨ on a fixed surface of a given
shape considered as a boundary magnetic surface. It is clear that in this case there is no guarantee that
the system of magnetic surfaces is nested in the entire volume inside the boundary surface.

The compact form of GSE is a result of axial symmetry and of the mixed representation of the magnetic
field, B=[∇Ψ×∇φ] + F (Ψ)∇φ.

The advantage of such representation is in the automatic satisfying the solinoidality (divB = 0) and
magnetic surface (B · ∇Ψ = 0) conditions. However, it works only in the case of axial symmetry. That
explains the attempts [3, 4] to represent B by using the so-called reference vectors instead of ∇φ. This
approach allows one to write the equilibrium equation in a relatively simple form, at that, the entire
difficulty of the further analysis lies on finding the reference vectors, which are not initially given and,
in their turn, depend on Ψ(r).

In this paper we use again themixed representation to describe three-dimensional plasma equilibrium in
a magnetic field with toroidal magnetic surfaces. To satisfy the magnetic surface condition, B ·∇Ψ = 0,
in the 3D case with ∂Ψ/∂φ ̸= 0 we compensate the component along ∇Ψ by adding a corresponding
summand: B=γ[∇Ψ×∇φ] + F∇φ− αF∇Ψ, (2)
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In Eq. (2) we have also provided for extra freedom in the poloidal magnetic field by a coefficient γ,
which is not supposed to be a function ofΨ. By doing so, we describe the magnetic field with magnetic
surfaces of arbitrary topology because Eq. (2) yields a decomposition of vectorB in three non-complanar
directions: [∇Ψ×∇φ], ∇φ, and ∇Ψ.

Three functions Ψ, γ, F should be determined from the common equations: the projection of the force
balance equation, ∇p = [rotB× B]/4π, on the direction of ∇Ψ, the solenoidality condition, divB = 0,
and the condition that the lines of the current lie on magnetic surfaces, rotB ·∇Ψ = 0. The final system



of equations has the form [5]:
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Function F ⋆ = F (1− α∂Ψ/∂φ) in Eqs. (4), (5) plays the same role as F did in axisymmetric case:
it is proportional to the toroidal component of the magnetic field, Bφ = F ⋆/r. The “axisymmetric”
nabla operator is also used, ∇0 = ∇ − ∇φ(∂/∂φ). Equation (3) is the analogue of the GSE in non-
axisymmetric case. Equations (4) and (5) have the form of magnetic differential equations (MDEs), i.e.,
equations of the type B ·∇f = s, which play an important role in the theory of plasma equilibrium in a
magnetic field [6, 7]. It immediately follows from Eq. (5) that if the total pressure of the plasma and the
magnetic field depends on the toroidal angle, the function F ⋆ = rBφ is inhomogeneous on magnetic
surface, i.e. F ⋆ ̸= F ⋆(Ψ) . In the degenerate case of purely poloidal magnetic field (F = 0), instead
of Eq. (4) one should use condition γ = γ(Ψ, φ) following from divB = 0, and Eq. (5) implies axial
symmetry of the total pressure, ∂(p+B2/8π)/∂φ = 0, which coincides with the results of Ref. [8].

For axisymmetric case, ∂/∂φ = 0, Eqs. (4), (5) transfer into conditions F = F (Ψ), γ = γ(Ψ) , and Eq.
(3) results in GSE (1).

The productivity of the suggested approach can be demonstrated for the case of “weak”axial asymmetry.
In this case the sought functionsΨ, F , and γ can be represented as combinations of basic (axisymmetric)
parts and small additives periodical on φ:

Ψ(r, φ, z) = Ψ0(r, z) + εΨ1(r, φ, z),

F (r, φ, z) = F0(Ψ0) + εF1(r, φ, z),

γ(r, φ, z) = 1 + εγ1(r, φ, z), ε ≪ 1.

with basic solution, Ψ0, satisfying GSE (1). The further technique of solving the equilibrium equations
consists of choosing Ψ0 and subsequent calculation from Eqs. (3)–(5) the functions Ψ1, F1, and γ1
depending on the toroidal angle. Example of the three-dimensional magnetic surface system obtained
in the described manner with the considered in Ref. [9] basic solution similar to the Hill vortex is
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The three-dimensional view of the magnetic surfaceΨ = 0.2Ψa described by Eq. (6) at ε = 0.3, k = 0.8
is shown in Fig. 1.
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