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ABSTRACT Stability

e The MHD Intermediate n mode stability in the negative triangularity ~ Use AEGIS MHD stability code
tokamak is investigated in comparison with the positive triangularity case .

n =1 modes: NTT is less stable than PTT

e Use the DIlI-D-negative-triangularity-experiment-like equilibria.
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e TCV and DIII-D experiments constantly show that the transport level in

the negative triangularity discharges is substantially lower than the

positive triangularity discharges, although it is generally believed that the h=3
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negative triangularity case is more unstable for low n MHD modes.
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e The theoretical interpretation for these experimental observations is Ml i ﬁ
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Fig. 1. Cross sections of positive (a) and negative (b) triangularity and 10. The results show that NTT (b) than PTT (a) has lower RWM
equilibria for DIII-D derivative configurations. growth rate. This is consistent with the experimental observations.

g 0 = E - — CONCLUSIONS

 We found that NTT 1s more stable than PTT for intermediate n MHD
modes although NTT 1s believed to be less stable for n=1 modes than
PTT,

e Our numerical results are consistent with the experimental
observations that NTT has lower turbulent transport level.

e The current work is based on the ideal MHD. It is relevant to the

o1 4T & a0 AT e T oE a6 o : T VR T— T 1 interpretation of the electromagnetic modes of low frequency.
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